Circular sets and powers of two

by G. Lathoud, May 2017

Contents

- Summary
- Definition: circular set
- Filling the set: an example (N=8)
- Success and failure
- Main result
- (O1): Filling, seen as a permutation
- (O2): About other filling methods
- (A1) Show that N power of $2 \Rightarrow P_N true$
- (A2) Show that N not a power of $2 \Rightarrow P_N$ false

Summary

This paper investigates a non-uniform way to visit a circular set without repetition. Interestingly, it turns out that only circular sets of 2^q elements permit this.

Definition: circular set

Take N holes arranged in a circle:

Example circular set with $N=8\,$

...pick one as the first hole #0, chose a direction (e.g. counterclockwise), and name the following holes accordingly #1, #2, ..., #(N-1):

Circular set (N=8) with direction and numbers

Filling the set: an example (N=8)

Fill the first hole #0

Move i=1 hole forward, and fill the destination hole #1

Move i=2 holes forward, and fill the destination hole #3

Move i=3 holes forward, and fill the destination hole #6

Move i=4 holes forward, and fill the destination hole #2

Last steps: We repeat the process, moving forward:

- i=5 holes (to #7), • then i=6 holes (to #5),
- and finally i=7 holes (to #4).

At this point all holes have been filled, so we stop. The order in which we filled the holes: [#0,#1,#3,#6,#2,#7,#5,#4] can be seen as a permutation of the first N=8 non-negative integers.

Success and failure

Repetitions are not accepted, i.e., whenever we land on a hole that has already been filled, we call that a failure. Example: N=3:

Looking at the first few values of N:

N=2	success	
N=3		failure
N=4	success	
N=5		failure
N=6		failure
N=7		failure
N=8	success	
N=9		failure
		failure
N=15		failure
N=16	success	
N=17		failure

Successes seem to correspond to powers of two: $N=2^q$ where $q\in \mathbb{N}_+^*$

Main result

A circular set of N elements can be visited in the above-described non-uniform way if and only if N is a power of two ($N=2^q$).

Formally: we define the property:

 $P_N \triangleq$ "for the circular set of N holes, for each step $i=1\dots N$, we land on an empty hole (an thus after the N steps all holes are filled)".

The main result of the present paper is:

 $N~is~a~power~of~two~\Leftrightarrow~P_N~true$

where "N is a power of two" means $log_2(N)\in \mathbb{N}_+$ or equivalently: $\exists~q~\in \mathbb{N}_+~s.~t.~N=2^q.$

Appendix (A1) demonstrates that $N \ power \ of \ 2 \Rightarrow \ P_N \ true$.

Appendix (A2) demonstrates that $N\ not\ a\ power\ of\ 2 \Rightarrow\ P_N\ false.$

Openings

(O1): Filling, seen as a permutation

The order in which we fill the holes, e.g. for N=8: $[\ \#0,\ \#1,\ \#3,\ \#6,\ \#2,\ \#7,\ \#4\]$ can be seen as a permutation of the first N=8 non-negative integers.

What happens if we repeat this permutation?

```
N=8 (2^3)

step 0 current 0,1,2,3,4,5,6,7
step 1 current 0,1,3,6,2,7,5,4
step 2 current 0,1,6,5,3,4,7,2
step 3 current 0,1,5,7,6,2,4,3
step 4 current 0,1,7,4,5,3,2,6
step 5 current 0,1,4,2,7,6,3,5
step 6 current 0,1,2,3,4,5,6,7
```

So we can observe a periodicity. What about other values of $N=2^q$?

```
N=
   4 (2^2)
                 period:
                                2
    8 (2^3)
                 period:
                                6
N=
N = 16 (2^4)
                 period:
                               14
N = 32 (2^5)
                 period:
                               30
N = 64 (2^6)
                 period:
                             2280
N = 128 (2^7)
                 period:
                            18480
```

N= 256 (2^8) period: 2964 N= 512 (2^9) period: 10248 N=1024 (2^10) period: 6036022

These results were obtained using this JavaScript <u>code</u>, running it in a browser console.

Open questions: Do all power of two $N=2^q$ have a periodicity? If yes, can someone derive a formula giving the period as a function of N, i.e. the series $(2,6,14,30,2280,\ldots)$?

(O2): About other filling methods

This paper investigated the particular filling method, where at each step i we move j=i holes forward, thus defining the series:

$$(j)_i=(1,2,3,\ldots,N-1)$$

Besides the obvious "uniform" filling method, where we move 1 hole forward each time:

$$(j)_i = (1, 1, 1, \dots, 1)$$

...are there other "non-uniform" filling methods without repetition, at least for N being a power of two?

For example, for $N=2^2=4$ the answer is yes. Besides the filling method investigated so far:

$$(j)_i = (1,2,3)$$

there is also:

$$(j)_i = (3, 2, 1)$$

which is equivalent to invert the direction. If we additionally restrict $(j)_i$ being itself a permutation of (1, 2, 3, ..., N-1), these are the only two possibilities for $(j)_i$ for N=4.

Open question: Are there other methods $(j)_i$ to fill without repetition, which work for all N powers of two? Especially when we restrict the series $(j)_i$ being itself a permutation of $(i)_i=(1,2,3,\ldots,N-1)$?

Appendices

(A1) Show that $N\ power\ of\ 2 \Rightarrow\ P_N\ true$

Let us assume H_1 and H_2 :

 H_1

N is a power of two: $\exists~q~\in\mathbb{N}_{+}^{*}~s.~t.~N=2^{q}$

 H_2

 $P_N \ false$, i.e. in at least one of the N steps $i=1\ldots N$, we land on a hole that has already been filled:

$$\exists (a,b) \in \mathbb{N}^2 \ s. \ t. \ \ 0 \leq a < b < N \ and \ V_a \equiv V_b \ [N]$$

where:

ullet V_i is, at step i, the total number of holes we've been moving since the beginning:

$$V_i riangleq \sum_{i=1}^i j = rac{i(i+1)}{2}$$

• $V_a \equiv V_b \; [N]$ means congruence modulo N:

$$\exists k \in \mathbb{N} \ s.\ t.\ V_b - V_a = k \cdot N$$

 H_2 implies:

$$\exists k \in \mathbb{N} \ s. \ t. \ \ rac{b(b+1)}{2} - rac{a(a+1)}{2} = k \cdot N$$

which we can rewrite:

$$b^2-a^2+b-a=2\cdot k\cdot N$$
 $(b-a)\cdot (b+a+1)=2\cdot k\cdot N$ $(lpha)$

Observations: b-a and b+a have same parities, hence b-a and b+a+1 have opposite parities, i.e. one is odd and the other one is even.

On the right hand side, $2\cdot N=2^{q+1}$ is a power of two, thus k must be odd. Moreover, since (b-a), (b+a+1) and $2\cdot N$ are all non-negative, we have k>0.

Summarized: $k\geq 1$, and k is the only odd term on the right hand side.

Let us assume k=1. Because the two terms on the left hand side have opposite parities, then either a+b+1=1 (impossible), or b-a=1 i.e. b=a+1 so (α) can be written: $1\cdot 2\cdot b=1\cdot 2\cdot N$, and thus b=N, which is impossible as well.

Therefore: k is odd and $k \geq 3$.

(A1.a) Let us assume b-a=k

 (α) can be rewritten:

$$k\cdot (1+2a+k)=2\cdot k\cdot N$$
 $1+2a+k=2\cdot N$ $a=N-rac{k+1}{2}$ $b=a+k=N+rac{2k-k-1}{2}$ $b=N+rac{k-1}{2}$

Since $k \geq 3$, we have b > N, which is impossible.

(A1.b) Let us assume a+b+1=k

i.e.

$$b-a = b - (k - (b+1)) = 2b - k + 1$$

 (α) can be rewritten:

$$egin{split} (2b-k+1)\cdot k &= 2\cdot k\cdot N \ 2b-k+1 &= 2N \ \ b &= N+rac{k-1}{2} \end{split}$$

Since $k \geq 3$, we have b > N, which is impossible.

Conclusion of (A1)

For $q\in \mathbb{N}_+^*$ and $N=2^q$, assuming P_N false leads to a contradiction, therefore P_N is true. $P_{2^0}=P_1$ is obvious, therefore:

$$orall q \in \mathbb{N}_+ \ P_{2^q} \ true$$

(A2) Show that $N \ not \ a \ power \ of \ 2 \Rightarrow \ P_N \ false$

Formally: we want to show that:

$$orall N \in \mathbb{N}_+^* \ s. \ t. \ log_2 N
otin \mathbb{N}$$
 $\exists (a,b) \in \mathbb{N}^2 \quad 0 \leq a < b < N \quad s. \ t. \quad V_a \equiv V_b \ [N]$

where $V_i riangleq rac{i(i+1)}{2}$ is the number of holes we've moved since the beginning.

For $(a,b)\in\mathbb{N}^2$, we define the property:

$$T_{a,b} \quad riangleq \quad 0 \leq a < b < N \quad and \quad V_a \equiv V_b \ [N]$$

To prove the result, we need to find at least one value of (a,b) that verifies $T_{a,b}$

(A2.1) Case: N=2p+1 where $p\in \mathbb{N}_+^*$

Since $V_i riangleq rac{i(i+1)}{2}$ we can write:

$$V_{n+1} - V_{n-1} = p+1 + p = N$$

Thus, a=p-1 and b=p+1 verify $T_{a,b}.$

Transition

It remains to find (a,b) verifying $T_{a,b}$ when N=2p is not a power of two.

(A2.2) Case: N even but not a power of two

i.e.

$$\exists (p,q) \in (\mathbb{N}_+^*)^2 \hspace{5mm} N = 2^q \cdot (2p+1)$$

e.g.

$$N = 6 = 2*3$$
 q:1 p:1
 $N = 10 = 2*5$ q:1 p:2

$$N = 12 = 4*3$$
 q:2 p:1

$$N = 14 = 2*7$$
 q:1 p:3

(A2.2.1) When $p \geq 2^q$

Let $a=p-2^q$ and $b=p+2^q$.

We have $0 \leq a$ and a < b and $N - b = 2^q \cdot 2p - p = p(2^{q+1} - 1) > 0$ therefore we have $0 \leq a < b < N$.

Besides,

$$egin{aligned} V_b - V_a &= \sum_{j=1}^{p+2^q} j & - \sum_{j=1}^{p-2^q} j \ &= \sum_{j=p-2^q}^{p+2^q} j & - (p-2^q) \ &= p \cdot (2 \cdot 2^q + 1) - (p-2^q) \ &= 2^q \cdot (2p+1) \ &= N \end{aligned}$$

(a,b) verify $T_{a,b}$.

(A2.2.2) When $p < 2^q$

Let $a=2^q-p-1$ and $b=2^q+p$.

We can show, as in (A2.2.1), that $0 \leq a < b < N$.

Besides,

$$egin{split} V_b - V_a &= \sum_{j=1}^{2^q + p} j & - \sum_{j=1}^{2^q - p - 1} j \ &= \sum_{j=2^q - p}^{2^q + p} j = 2^q \cdot (2p + 1) \ &= N \end{split}$$

Thus (a,b) verify $T_{a,b}$.