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Abstract. Detection is usually done by comparing some criterion to a threshold. It is often
desirable to keep a performance metric such as False Alarm Rate constant across conditions.
Using training or development data to select the threshold may lead to suboptimal results on test
data recorded in different conditions. This paper investigates unsupervised approaches, where
no training data is used. In brief, a probabilistic model is fitted on the test data using the EM
algorithm, and the threshold value is selected based on the model. The proposed approaches
(1) use the test data itself to compensate simplifications inherent to the model, (2) permit the use
of more complex models in a straightforward manner. On a microphone array speech detection
task, the proposed unsupervised approach achieves similar or better results than the supervised
“training” approach. The methodology is general and may be applied to other contexts than
microphone arrays, and other performance metrics.
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1 Introduction

This paper deals with the detection task. For example, in the case of speech source detection, each
data sample needs to be classified as either “active” or “inactive”. Usually the measured value of some
criterion (“activeness” in Fig. 2c) is compared to a threshold. Various possible values of the threshold
correspond to various (FAR, FRR) “working points” on the Receiver Operating Characteristic (ROC)
curve (Fig. 1). FAR is False Alarm Rate and FRR is False Rejection Rate, defined as follows:

FAR
def
=

Number of false alarms

Number of inactive samples in the ground− truth
, (1)

FRR
def
=

Number of false rejections

Number of active samples in the ground− truth
, (2)

where the ground-truth is an annotation of the data, a false alarm happens when a sample is “inactive”
in the ground-truth and “active” in the result, and a false rejection happens when a sample is “active”
in the ground-truth and “inactive” in the result.

This paper investigates automatic threshold selection: the main focus is not to improve the global
characteristic of the detector (ROC curve), but rather to be able to select a priori a user-specified
working point (desired target value FART), see Fig. 1. The FAR must remain as constant as possible
across various conditions (noisy, clean, single soure, multiple sources etc.).

Trying to obtain an a priori fixed, given FART could be useful for intrusion detection, as in
password verification, where the number of false alarms needs to be stable across users and noise
conditions, in order to make the system usable for regular users as well as efficient enough to detect
unwanted intruders. With “training” approaches, a threshold value is usually selected on training
data, on which the true classification (ground-truth) is known. The threshold is then kept fixed and
applied on new, unseen test data. If training and test data represent very different experimental
conditions (e.g. noisy and clean), a fixed threshold leads to suboptimal results. Although variations
exist, such as time-varying threshold learning approaches [1] and validation approaches [2], all are
intrinsically limited by the overall variety of the “training” data: this is the “generalization” issue.

Alternatively, unsupervised approaches allow for condition-dependent threshold selection, on the
test data itself, as in a heuristical study on Electro-Encephalogram classification [3]. The present
paper presents a principled way to select the threshold within a continuum of possible values, by
actually predicting the FAR a priori, without training data. On each test data (e.g. recording), a
sensible probabilistic model is fitted using the EM algorithm [4]. A threshold value is chosen based on
the model, such that an estimate of the FAR will be close to a user-specified target value FART. These
approaches realize composite hypothesis testing [5], where the result can be sensitive to the quality of
the parameter estimation. The main contribution is the “model+data” posterior-based approach that
(1) compensates model imperfections, using the test data itself, (2) permits to use multidimensional
models in a straightforward manner.

Results are reported on a microphone array detection task, where speakers in a meeting room
must be correctly detected and located. Both space and time are discretized, and for each (sector of
space, time frame) pair an “activeness” value is estimated, as in [6, 7]. Compared to the “training”
approach, unsupervised model-based approaches (see Tab. 1) “generalize” better. The measured FAR
is more stable across experimental conditions, without using training data. The proposed approach
is generic, and could be applied to other tasks than microphone array detection, and other metrics
than FAR. A preliminary experiment on FRR confirms its superiority over “training”.

The rest of this paper is organized as follows. Section 2 describes the microphone array speech
detection task. Section 3 describes the “training” approach, and experiments on the microphone array
task highlight the generalization issue. Section 4 addresses this issue without training data, by fitting
a probabilistic model on each test recording with the EM algorithm [4]. A major contribution is a
posterior-based approximation of FAR that allows to (1) select the detection threshold a priori, on each
test recording separately, without training data, (2) compensate simplifications made in the model,
using the test data itself, and (3) use more complex, multidimensional models in a straightforward
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Figure 1: ROC curve. The task is to select a threshold δx such that the measured FAR (red triangle)
is as close as possible to the desired target FART (black dot). Ideally FAR = FART. This must be
achieved independently of the experimental conditions.

Approach: training model only model+data

Dimensionality D = 1 D = 1 D = 1 D > 1
Probabilistic model none EM fitting on “test” data.

(no ground-truth)

Table 1: Threshold selection approaches used in this article.

manner, as reported in Section 5. Overall, the proposed approach yields better results than the
“training” approach: the variability of the FAR across experimental conditions is reduced, without
using training data. Section 6 provides directions for future work, including preliminary results with
another metric (FRR) that confirm the interest of the approach. Finally, Section 7 concludes. For the
sake of clarity, full details, justifications and EM derivations of the probabilistic models are presented
in Annexes B and C.

2 The task: detection with microphone array

A microphone array can be used to detect where and when a given person is speaking. This includes
cases where multiple people speak concurrently, as often found in spontaneous multi-party speech
(meetings). This section briefly summarizes a previous work that was successfully applied in both
meeting rooms [6] and cars [7]. Note that the exact task addressed here is wideband acoustic source
detection, of which speech is only one case. No specific measure is taken to discriminate between speech
and non-speech sources. Therefore, in the rest of this paper, the terms “inactivity” and “activity” are
used in order to avoid confusion with “silence” and “speech”.

Fig. 2 illustrates this approach. Both space and time are discretized, respectively into volume
of spaces (e.g. radial sectors, as in Fig. 2c), and short time-frames (20 to 30 ms). For each time-
frame, a discrete frequency-domain analysis called “SAM-SPARSE-MEAN” permits to estimate the
“activeness” of each sector, defined as the bandwidth occupied by the acoustic sources in that sector [7].
Since speech is a wideband signal, the larger this number is, the more likely there is at least one active
source in the corresponding sector. “Activeness” is the feature used for detection in the following. For
details about activeness computation from the multiple waveforms, please refer to [7]. The process
to transform a time-frame of samples from the multiple waveforms (Fig. 2b) to a vector of activeness
values (Fig. 2c) can be summarized by the following steps:

• Process each frequency bins separately. A frequency bin is a narrowband in the FFT framework.
Nbins is the total number of frequency bins.

• Average the delay-sum power within a sector (volume of space) for no additional cost [7].
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Figure 2: Sector-based detection: multiple channels are recorded synchronously (a,b), and the active-
ness is estimated for each sector s (Fig. c) and each time frame t (Fig. d), as in [6, 7].
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Figure 3: Thresholding the activeness values {xs,t} to take the final decisions {ĉs,t}. Red circles mark
False Alarms.

• Sparsity assumption: for each frequency bin, we assume that there is only one active sector, the
one with maximum delay-sum power.

• Activeness xs,t of a given sector s at time t
def
= number of frequency bins where sector s is

dominant at time t (1 ≤ s ≤ S, 1 ≤ t ≤ T and 0 ≤ xs,t ≤ Nbins).

Note that sparsity assumption, similar to [8], implies that, by construction, for a given time frame t,
all activeness values sum to the total number of frequency bins defined by the user for the FFT (e.g.
Nbins = 512):

∑

s xs,t = Nbins.
Repeating this process over time yields a spatio-temporal pattern of “activeness” (Fig. 2d). The

set of all values xs,t is written:

{xs,t} def
= { xs,t | 1 ≤ s ≤ S, 1 ≤ t ≤ T } (3)

Detection task

A final binary decision needs to be taken: for a given sector s and a given time frame t, is there at
least one active source? A straightforward approach is to compare the activeness xs,t to a threshold
δx, as illustrated in Fig. 3.

Note that the aim is to detect active sources correctly in both space and time. However, in practice
the detection is never perfect and mistakes are made. See Fig. 3b for an example with False Alarms:
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an “active sector” decision is taken at a time when that sector is inactive. By comparing all the final
decision {ĉs,t} with a ground truth {cs,t}, performance metrics are derived, such as False Alarm Rate
(FAR). In our case, it is the proportion of errors made on inactive (sector, time frame) pairs. For a
formal definition of FAR, see Section A.

The purpose of this paper is to address the threshold selection issue: how to select δx so that
the actual False Alarm Rate (FAR) will be equal to a desired target value FART. For example, in a
practical application a user may be interested in FART = 0.5% of false alarms.

The goal is not to improve the quality of the feature xs,t (e.g. improve the ROC curve [2]), but
rather, for a given feature xs,t (i.e. a given ROC curve), to be able to select a threshold δx (i.e. working
point) that is relevant to a given task: FAR(δx) = FART. In the case of password verification, this
would mean reaching a user-specified compromise between having too many false alarms (too many
intruders can enter) and too many false rejections (too many users classified as intruders).

The main issue is to be able to select this threshold in an adaptive manner: for different ex-
perimental conditions (noisy/clean, indoor/outdoor, single source/multiple sources, various persons,
etc.), different threshold values need to be selected to ensure that FAR = FART. In other words,
we need to be able to predict how well a system will perform on new, unseen data – i.e. predict its
performance FAR as a function of threshold value δx.

3 Threshold Selection with Training Data

3.1 Data

Five recordings where made in the IDIAP meeting room, with an 8-microphone array (10 cm radius)
on a table. 3 recordings (a),(b),(c) where made with 3 loudspeakers playing synthesized speech in
a concurrent manner (2 or 3 loudspeakers active simultaneously). Each recording lasted 20 min-
utes. The loudspeaker spatial locations are known, as depicted by Fig. 4. Moreover, the use of
synthesized speech permits to have an exact speech/silence segmentation for each loudspeaker. In
addition, 2 recordings (d),(e) were made with humans, and annotated by a human in terms of spatial
location [9] and speech/silence segmentation for each person. (d) contains a single person at sev-
eral locations, while (e) contains multiple persons talking at the same time. All data used in the
experiments belongs to a corpus available online [9]. The data and a detailed description are fully
available at http://mmm.idiap.ch/Lathoud/05-ICASSP. The processing for extracting the Active-
ness values {xs,t} (Section 2) was done with half-overlapping time frames of 32 ms (one frame every
16 ms).

3.2 Training Approach

A classical approach is to annotate a recording (called “training data”) by marking the ground-truth
cs,t = 0 or 1 for each sector s and each time frame t. Then, using this annotated data, a threshold δx

is selected such that FAR(δx) = FART. Afterwards, the threshold δx is kept fixed and applied to
any unseen data (called “test data” in the following). For training data, we used a small part (first 3
minutes) of loudspeaker recording (a). For test data, we used the remaing of (a), as well as all other
recordings (b),(c),(d),(e).

The process of selecting a threshold δx on the training data and applying it on the test data was
repeated for various desired target values FART, and the actual FAR was measured in each case. On
loudspeaker data, comparison between the desired target FART and the measured FAR is shown in
Figs. 6a,b,c. The result is close to ideal, which is not surprising since the training and test conditions
are very similar.

However, when applied to human data (Figs. 6d,e), the resulting curve is quite far from ideal. This
is also not surprising, since the “human” condition (real speech from humans) differs a lot from the
“loudspeaker” condition (synthetic speech from loudspeakers) used during training. In other words,
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Figure 4: Setup used for the loudspeaker recordings. Each recording lasts 20 minutes, with either 2
or 3 loudspeakers playing at the same time.

(d) (e)

Figure 5: Recordings with humans: (d) single speaker at several locations (3 min 40 sec), (e) multiple
concurrent speakers (8 min 30 sec).

a threshold δx selected on the training condition does not generalize to very different test conditions.
The following sections attempt to address this issue by avoiding the use of training data.

4 Threshold Selection Without Training Data

In this section, unsupervised approaches are examined, where training data is not used. A sensible
1-dimensional probabilistic model is fitted on any unseen test data {xs,t} using the EM algorithm [4],
as described in Section 4.1.

The question of selecting a threshold to take the final detection decision (as in Fig. 3) is addressed
in two different manners. Section 4.2 describes an approach that only relies on the model fitted on the
test data, in an unsupervised manner. Section 4.3 attempts to compensate imperfections in the model
by using the same test data again, in addition to the fitted model, to select the threshold. Section 4.4
contains experimental results.

It is important to bear in mind that the threshold selection approaches described below have no
impact on the ROC curve. Thus, the ROC curve is unchanged, compared to the approach with
training data (Section 3). Indeed, the aim is not to improve the ROC curve, but rather to be able
to select a working point (in terms of FAR) that will be stable across experimental conditions. This
way, a robust behavior can be guaranteed, that will meet some practical specification particular to a
task (FAR(δx) = FART) as independently as possible of the condition.

4.1 Unsupervised fit of a probabilistic model on test data

A given piece of test data {xs,t} (Fig. 7a) is extracted as described in Section 2. It is flattened
into a 1-dimensional histogram, irrespective of sector in space s or time frame t (gray histogram in
Fig. 7b). Next, a sensible 2-mixture model in 1-dimensional space is fitted on the histogram using
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Figure 6: Threshold selection with training data, applied to loudspeaker recordings (see Figs. 4a,b,c)
and human recordings (see Figs. 5d,e): comparison between target FART and result FAR. In the
“3 human speakers” case, the positive bias between FAR and FART is due to body noises (breathing,
stomps, shuffling paper) that could not be marked in the ground-truth, since their location are unkown.
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respectively.
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all
silence
activity
data

δ x

Figure 8: Estimation of the FAR for a given threshold δx, using the model only, through integration
(red area).

the EM algorithm [4]. “2-mixture” means that one component of the model describes “inactivity”,
while the other component of the model describes “activity”. This type of approach was introduced
earlier on a different task: noise-robust automatic speech recognition, as reported in [10]. The model
is described in details in Section B, along with justifications and EM derivation. In brief:

• The “inactivity” distribution f0(x) is a Rice distribution [11].

• The “activity” distribution f1(x) is a Shifted Rice distribution, which means it models values x
above a moment-based statistic of f0 (RMS value). This is a formal way to directly include in
the model a practical assumption: that only values above the average “inactivity” background
noise level can be distinguished from noise.

Use of such a model with the EM algorithms avoids any hand-tuning of parameters, as in [10]. The
blue, green and red curves in Fig. 7b show an example of fit on the data after convergence of EM.

4.2 “model only” threshold selection

Once the model is fitted on the test data (as in Section 4.1), the next task is to select a threshold δx.
As illustrated in Fig. 8, one possibility is to use the model alone to estimate the FAR for a given

value of the threshold δx:

FAR1(M, δx) =

∫ +∞

δx

f0(x)dx (5)

The threshold selection task then amounts to inverse the integral: select δx such that
FAR1(M, δx) = FART.

One possible issue with this approach is over-reliance on the quality of the fit of the model. Since
a model is always a simplification of reality, in some cases it may not fit well the data, as illustrated
in Fig. 9. Consequently, the estimate in Eq. 5 will be very different from the actual FAR. Thus, a
threshold δx would be selected that leads to a performance FAR very different from the desired FART.
This issue is addressed in Section 4.3.

4.3 “model+data” threshold selection

This section proposes an attempt to correct a possible bad fit of the model on the test data, by using
the test data again to select the threshold δx. Thus, the test data is used twice: first to fit the
model in an unsupervised manner, as described above, second to select the threshold. Consider the
definition of False Alarm Rate in Eq. 1. The rest of this section proposes to approximate numerator
and denominator with their expected value, using posterior probabilities.
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Approximation of the numerator

For a given sample xs,t, a false alarm happens when the detection decision is ĉs,t = 1 and the truth
is cs,t = 0. Since the truth cs,t is unknown, we estimate the probability of having a false alarm for
sample xs,t:

p (ĉs,t = 1, cs,t = 0) xs,t, M, δx

= p (xs,t > δx, cs,t = 0) xs,t, M, δx

= p (xs,t > δx) cs,t = 0, xs,t, M, δx · p (cs,t = 0) xs,t, M, δx

= 1xs,t>δx
· p

(0)
s,t

(6)

where M = {w0, w1, f0, f1} is the model, 1proposition is the indicator function: 1proposition = 1 if propo-

sition is true, 0 otherwise, and p
(0)
s,t is the posterior probability of silence, for sample xs,t, as derived

from Bayes rule and the model M :

p
(0)
s,t

def
= p (cs,t = 0 | xs,t, M ) (7)

=
p (cs,t = 0 | M ) · p (xs,t | cs,t = 0, M )

p (cs,t = 0 | M ) · p (xs,t | cs,t = 0, M ) + p (cs,t = 1 | M ) · p (xs,t | cs,t = 1, M )
(8)

=
w0 · f0(xs,t)

w0 · f0(xs,t) + w1 · f1(xs,t)
. (9)

Note that the last term in the last line of Eq. 6 is justified by the fact that the estimate of the
posterior probability of inactivity does not depend on the threshold δx.

From Eq. 6, the expected number of false alarms is:

∑

s,t

p̂ ( ĉs,t = 1, cs,t = 0 | xs,t, M, δx ) =
∑

s,t

xs,t>δx

p
(0)
s,t . (10)

Approximation of the denominator

The expected number of inactive samples (i.e. xs,t such that cs,t = 0) is:

∑

s,t

p
(0)
s,t (11)

Approximation of FAR

From Eqs. 10 and 11, we propose the following FAR estimate:

FAR2(M, {xs,t}, δx)
def
=

E {Number of false alarms |M, {xs,t}, δx}
E {Number of inactive samples |M, {xs,t}, δx}

(12)

=
∑

s,t

xs,t>δx

p
(0)
s,t /

∑

s,t

p
(0)
s,t (13)
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where E {· | ·} is the conditional expectation.

Implementation

Determining the threshold δx can be done in an efficient manner, using the following steps:

• Order samples {xs,t} by decreasing value, irrespective of space or time:

x1 ≥ x2 ≥ · · · ≥ xj ≥ · · · ≥ xJ (14)

where J = S · T is the total number of samples.

• For each sample xj in the order, calculate FAR2 for δx = xj , by computing the cumulative series

of the corresponding posterior probabilities p
(0)
j , and normalizing it by its last term (

∑

j p
(0)
j ):

FAR2 (M, {xs,t}, xj) =

j
∑

k=1

p
(0)
k /

J
∑

k=1

p
(0)
k (15)

• Select δx such that FAR2 (δx) = FART through linear interpolation.

Overall, the cost of this procedure is directly proportional to the amount of data S ·T , which itself
can be reduced to a fixed, small number of samples (e.g. 100), as explained in Section B.

4.4 Experiments

Graphical results are given in Fig. 10 (dashed curves), and corresponding numerical averages are
given in Tab. 2 for a practical range of small FART values (up to 5%). The latter is the Root Mean
Square (RMS) of (FAR/FART − 1):

√

√

√

√

〈

(

FAR

FART
− 1

)2
〉

FART<0.5%

(16)

This average metric was chosen in order to normalize results that have very different orders of mag-
nitude (from 0.1% to 5%). Ideally it is equal to zero.

Two observations can be made:

• Compared to the “training” result, both model-based approaches yield a degradation on loud-
speaker data and an improvement on human data. This can be explained by the fact that no
condition-specific tuning is made in the model-based approaches, while in the “training” case,
tuning was done on loudspeaker data.

• The “model+data” approach systematically improves over the “model only” approach.

Both points confirm previous expectations. It is important to bear in mind that all three approaches
“training”, “model only” and “model+data” have the exact same ROC curve (FRR as a function of
FAR), since the decision process is the same: xs,t ≷ δx.

Overall, although there is a major improvement over the “training” approach in terms of robustness
across conditions, especially visible in Fig. 10d,e, we can see that the results are sometimes suboptimal
(loudspeaker data).

The next section shows that the “model+data” approach can be applied to more complex models,
thus bringing further improvement.

5 Application to Multidimensional Models

All previous approaches (training and model-based) were in 1-dimensional space: each detection
decision ĉs,t was taken based on one sample xs,t only. This section shows that the “model+data”
approach presented in Section 4.3 can be applied to more complex multidimensional models.



IDIAP–RR 05-52 11

0 10
0

5

10
3 loudspeakers (equal)

FAR
T

 (%)

F
A

R
 (

%
)

ideal
training
model only
model+data
model+data (N−D)

0 10
0

5

10
3 loudspeakers (one further)

FAR
T

 (%)
F

A
R

 (
%

)

ideal
training
model only
model+data
model+data (N−D)

0 10
0

5

10
3 loudspeakers (grouped)

FAR
T

 (%)

F
A

R
 (

%
)

ideal
training
model only
model+data
model+data (N−D)

(a) (b) (c)

0 10
0

5

10
single human speaker

FAR
T

 (%)

F
A

R
 (

%
)

ideal
training
model only
model+data
model+data (N−D)

0 10
0

5

10
3 human speakers

FAR
T

 (%)

F
A

R
 (

%
)

ideal
training
model only
model+data
model+data (N−D)

(d) (e)

Figure 10: Threshold selection with and without training data, applied to loudspeaker recordings (see
Fig. 4a,b,c) and human recordings (see Fig. 5d,e): comparison between desired target and measured
False Alarm Rate. “training”, “model only”, “model+data” and “model+data (N-D)” correspond to
Sections 3, 4.2, 4.3 and 5, respectively. In the “3 human speakers” case, the positive bias between
FAR and FART is due to body noises (breathing, stomps, shuffling paper) that could not be marked
in the ground-truth, since their location are unkown.

3 loudspeakers 1 human 3 humans
Recording (a) (b) (c) (d) (e)
training 0.109 0.142 0.154 1.898 3.929
model only 0.576 1.022 0.977 1.780 3.119
model+data 0.217 0.494 0.443 1.121 2.344
model+data (N-D) 0.117 0.078 0.121 0.452 1.846

Table 2: RMS statistic over the interval FART = [0.1%, 5%]. This is the RMS of (FAR/FART − 1)
(Eq. 16): the lower, the better. The best result for each recording is indicated in boldface.
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5.1 Multidimensional model

On the microphone array detection task, as explained earlier in Section 2, we know that for a given
time frame t, all numbers xs,t sum to a constant:

∑

s

xs,t = Nbins (17)

Overall, this motivates modelling all sectors (x1,t · · ·xs,t · · ·xS,t) jointly, as described in details in
Section C and briefly summarized here.

In particular, it can be expected that if all sectors are “silent”, the frequency bins will be attributed
to sectors somewhat randomly, so that a given sector will receive in average Nbins/S frequency bins.
On the contrary, if at least one sector is active, it will capture more frequency bins than other sectors.
Therefore, the remaining silent sectors will capture less than Nbins/S frequency bins in average.
Intuitively, at least two probabilistic distributions should be used for “silent” sectors.

To summarize, the dependencies between the sectors are modelled through a frame state hidden
variable. We assume independence between the sectors conditioned by the knowledge of the overall
state of the time frame, as illustrated in Fig. 14. More precisely, a time frame can be “active” or
“inactive”, where an “active time frame” means that it contains at least one active sector. Thus, 3
probability density functions are used, one for each of 3 cases:

• Inactive frame, inactive sector: a Gamma distribution is used.

• Active frame, inactive sector: another Gamma distribution is used, with different parameters.

• Active frame, active sector: a Shifted Rice distribution is used to capture large values of Active-
ness, as in Section 4.

An example of fit of the 3 distributions (the two Gammas and the Shifted Rice) is depicted by
Fig. 15b. The model used in experiments reported below is described in details in Section C, along
with justifications and EM derivation.

5.2 Thresholding posteriors

However a threshold cannot be defined on multidimensional data.

We therefore propose to reuse the “model+data” approach presented in Section 4.3, by simply
replacing the threshold on the 1-dimensional “activeness” feature:

xs,t ≷ δx (18)

with a threshold on the estimate of the posterior probability of activity:

p (cs,t = 1 | {x1,t . . . xS,t}, M ) ≷ δp (19)

Thus, the exact same reasoning can be made as in Section 4.3, and the threshold on posteriors δp

can be determined on the test data itself such that FAR2(M, {xs,t}, δp) = FART. With a model in mul-
tidimensional space, the goal is to capture relations between several data samples (x1,t · · ·xs,t · · ·xS,t).
Thus, it is hoped that the model will fit the data better, which in turn will yield an estimate FAR2

closer to the actual FAR.

Implementation: it is exactly similar to the 1-dimensional case (Section 4.3). Simply, the
ordering of data samples is replaced with an ordering of posteriors. Thus, the cost of selecting a
threshold δp is also directly proportional to the total number of samples T · S.
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Figure 11: ROC curves on the loudspeaker recordings of the 1-dimensional approaches (Eq. 18, ap-
proaches “training”, “model only”, “model+data”) and multidimensional approach (Eq. 19, approach
“model+data (N-D)”).

5.3 Experiments

The results are shown in Fig. 10 and Tab. 2. In all recordings, for larger values FART > 5%, the results
are similar to those of the 1-dimensional “model+data” approach. For lower values FART < 5%, in
all recordings a systematic improvement is seen over the 1-dimensional “model+data” approach. On
recording (a), results are similar to those of best one: “training”, which itself was tuned on part of (a).
On recordings (b),(c),(d),(e) the multidimensional approach yields the best results of all approaches.
Overall, this result is quite interesting given that the multidimensional approach does not use any
training data.

However, Fig. 10 and Tab. 2 only involve the FAR prediction performance. For the sake of
completeness, we also looked at the ROC curves. As explained earlier, the three 1-dimensional methods
share the same ROC curve. On the contrary, the ROC curve of the multidimensional approach is
different. In the case of loudspeaker recordings a systematic improvement is seen as compared to the
1-dimensional approaches (Fig. 11). ROC curves on human recordings are not reliable, as explained
in Section 6.2.

6 Openings

This section provides insights about future extensions of the present work, from both theoretical and
practical point of views.

6.1 Theory

In Section 4.3, it was proposed to approximate the true FAR:

FAR
def
=

Number of false alarms

Number of inactive samples
(20)

by approximating the numerator and the denominator separately (Eq. 13):

FAR2(M, {xs,t}, δx)
def
=

E {Number of false alarms |M, {xs,t}, δx}
E {Number of inactive samples |M, {xs,t}, δx}

. (21)



14 IDIAP–RR 05-52

Ideally the whole ratio should be approximated at once:

FAR3(M, {xs,t}, δx)
def
= E {FAR |M, {xs,t}, δx} (22)

= E

{

Number of false alarms

Number of inactive samples

∣

∣

∣

∣

M, {xs,t}, δx

}

, (23)

which is a possible direction for future work. This may apply to other metrics as well (FRR, HTER,
precision, recall, etc.).

6.2 Practice: Preliminary Experiment with False Rejection Rate

Similarly to Section 4.2, a “model only” estimate of FRR can be proposed:

FRR1(M, δx)
def
=

∫ δx

0

f1 (x)dx, (24)

and similarly to Section 4.3, a “model+data” estimate can be proposed:

FRR2(M, {xs,t}, δx)
def
=

∑

s,t

xs,t≤δx

p
(1)
s,t /

∑

s,t

p
(1)
s,t (25)

Curves depicting FRR as a function of FRRT are shown in Fig. 12. Note that the whole [0%, 100%]
interval is shown. Two observations can be made:

• On loudspeaker recordings (Figs. 12a,b,c), the “training” approach fails, while all the proposed
model-based approaches provide a reasonable estimation of FRR. This is quite interesting, given
that the “training” approach was tuned on part of the recording corresponding to Fig. 12a. A
possible reason is that FRR is by definition linked to the distribution of “activity”, which may
be more variable than “inactivity” (e.g. between different spoken words), hence the “training”
results are much worse than in the FAR case.

• On human recordings (Fig. 12d,e), for all approaches a large bias can be seen in the region of
small FRRT. The reason is most likely an issue with ground-truthing: for each location, speech
segments were marked as begin- and end-point, by listening to the signal. Each speech segment
very often contains many short silences between words or syllables, and therefore possibly many
frames where the selected “activeness” feature (Fig. 2c,d) is too low. This explains the large
number of artificial false rejections. In other terms, the ground-truth of “activeness” is over-
conservative for the human recordings and the FRR task. This artificially lifts up the FRR
for conservative thresholds (low FAR). Thus, in the human case, it is not possible to judge or
compare the FRR prediction curves.

Tab. 3 shows numerical results for loudspeaker recordings, on the FRRT ∈ [0.1%, 5%] range. We
can already see that:

• The “model+data” approach always performs best.

• Although not always the best, the multidimensional approach is the most robust (“maximum”
column).

6.3 Extension to Multiple Classes

In this section we investigate whether the proposed threshold selection approach can be extended to
a multi-class classification contect. A class Qk can be selected from a set {Q1, · · ·Qk, · · ·QK}, from
an observed data sample x and a model M , by selecting the Maximum A Posteriori (MAP):

k̂ (x, M) = arg max
k

p (Qk | x, M ) (26)
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Figure 12: Threshold selection with and without training data, applied to loudspeaker recordings (see
Fig. 4a,b,c) and human recordings (see Fig. 5d,e): comparison between desired target and measured
False Rejection Rate. “training”, “model only”, “model+data” and “model+data (N-D)” correspond
to Sections 3, 4.2, 4.3 and 5, respectively. Note that all FRRT values from 0% to 100% are shown.
Figs. d and e illustrate the ground-truthing issue with human data.

3 loudspeakers
Recording (a) (b) (c) Maximum
training 4.072 5.435 5.623 5.623
model only 0.400 2.356 0.846 2.356
model+data 0.279 2.759 0.783 2.759
model+data (N-D) 0.728 0.743 0.976 0.976

Table 3: RMS statistic over the interval FRRT = [0.1%, 5%]. This is the RMS of (FRR/FRRT − 1)
(Eq. 16): the lower, the better. The best result for each recording is indicated in boldface. The
rightmost column shows the maximum over all 3 recordings.
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Intuitively, if all posteriors p (Q1 | x, M ) · · · p (QK | x, M ) have comparable values, selecting the max-
imum is almost equivalent to a random choice. Thus, one may want to determine whether the system
is confident in the decision k̂(x, M). For example, a speaker recognition system would ask the user to
speak again, if the maximum posterior is below a threshold:

{

confident : p
(

Q
k̂
| x, M

)

> δp

not confident : p
(

Q
k̂
| x, M

)

≤ δp
(27)

Then again, the question of selecting the threshold δp for a given objective criterion (FAR = FART

or other) can be addressed. Indeed, Eq. 27 can be seen as a detection task, and by definition:

p (correct decision | x, M ) = p
(

Q
k̂
| x, M

)

(28)

From Eq. 28, the objective criterion can be estimated and the threshold δp can be selected, exactly as
in Section 5.2.

7 Conclusion

The purpose of this paper was to achieve detection so that a user-specified working point is reached,
in terms of FAR. It was shown that using training data leads to the generalization issue: the de-
tection threshold selected on training conditions may not be adequate on different test conditions.
An alternative is not to use any training data, but rather to rely on unsupervised fit of a model on
test data. Even with an unsupervised approach, one question remains: how to select the detection
threshold in an adequate manner? To that purpose, we proposed to determine the detection threshold
from the unsupervised model itself. The proposed approach is robust across conditions and permits to
predict the FAR as accurately or better than the “training” approach, on the microphone array task
considered here. In the proposed approach, the main novelty is a simple mechanism to compensate
the possible mismatch between an unsupervised model and the test data, by estimating conditional
expectations over the test data itself. In particular, it allows use of complex multidimensional models
in a straightforward manner. The proposed approach is generic, thus it could be applied to other
tasks than microphone array sector-based detection. We are currently using the proposed approach to
investigate links between better voice activity detection and higher precision of speaker localization.
The proposed approach could also be applied to other metrics such as False Rejection Rate (FRR),
for example to detect end-points prior to automatic speech recognition, where it would be desirable to
keep FRR to a small value. Finally, we showed in theory that the approach can be used in multiclass
classification problems.
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Ground-truth
cs,t = 0 cs,t = 1

Detection ĉs,t = 0 TN FN
decision ĉs,t = 1 FP TP

Table 4: The four types of results. TP = True Positive, TN = True Negative, FP = False Positive,
FN = False Negative.

A False Alarm Rate and False Rejection Rate

For each sector s and each time frame t:

• The ground-truth is cs,t = 0 or 1.

• The decision taken by the system is ĉs,t = 0 or 1.

Thus, following [2], four types of cases happen, including correct classifications TP, TN and wrong
classifications FP, FN, as defined in Tab. 4. The corresponding number of samples NTP, NTN, NFP, NFN

are counted over all sectors s = 1 · · ·S and all time frames t = 1 · · ·T .
False Alarm Rate (FAR) is defined as follows:

FAR
def
=

NFP

NFP + NTN
. (29)

False Rejection Rate (FRR) is defined as follows:

FRR
def
=

NFN

NFN + NTP
. (30)

B 1-dimensional Model

This section decribes the 2-mixture probabilistic model f(x) = w0 · f0(x) + w1 · f1(x) used to model
the distribution of xs,t in Section 4, and derives the EM algorithm [4] for it.

B.1 Description

As described in details in [7] and briefly summarized in Section 2, the acoustic spectrum is divided
into bins (narrowbands), and the activeness feature (xs,t ∈ {0, 1, · · ·Nbins}) is the number of frequency
bins where acoustic sources in sector s are dominant. In the case that there is a speech source in a
sector of space, the corresponding value xs,t will be large because speech is wideband.

B.1.1 Inactivity: Dirac + Rice

In the case that there is no active coherent source at all in a particular frequency bin, the choice of
the dominant sector is random, with equal probability 1/S for each sector. Hence, in the case that
a sector s is completely inactive at time t, the number of bins attributed to this sector xs,t is a sum
of realizations of such uniform random processes. It is therefore expected that xs,t follows a binomial
distribution.

However, in real cases, even for a sector s that does not contain any active source, xs,t will not
only result from purely random decisions, but it will also capture acoustic activity due to background
noise (e.g. computer fan) and reverberations. We found visually, on some inactive sectors in the
training data, that the Gamma distribution has a better fit than the binomial distribution. Gamma
can therefore be used to model inactive sectors.
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Moreover, the parameters of the Gamma used to model inactive sectors vary greatly between
conditions, which can be roughly divided into two cases: whether at least one sector is active in a
given frame or not. Therefore, ideally, two different distributions should be used. This is the issue
addressed by the multidimensional model in Section 5.

In the case of a 1-dimensional model, we need to model a mixture of all inactive sectors (whether
the frame is active or not) with a single distribution. We found visually, on real data, that the Rice
distribution provides a better fit than the Gamma.

Finally, since some (rare) values of xs,t are zeroes, the inactive data is modelled by a mixture of a
Dirac distribution at zero and a Rice distribution:

f0(x)
def
= p̂ (xs,t | cs,t = 0) (31)

= wD
0 · δ0(x) + wR

0 · Rσ0,V0(x), (32)

where δ0 is the Dirac distribution centered in 0 and the Rice distribution is defined as:

Rσ,V (x)
def
=

{

x
σ2 e−

x2+|V |2

2σ2 I0

(

x|V |
σ2

)

if x > 0

0 if x ≤ 0
(33)

where I0 is a modified Bessel function of the first kind.

B.1.2 Activity: Shifted Rice

The distribution of xs,t for acoustic activity (especially speech) follows a distribution that is quite
complex, varying over time and not known a priori. We therefore chose to use the Rice distribution
for activity, because it is a flexible way to model a distribution of positive values. The shape of the
Rice can vary between a pointy, Dirac-like distribution to a Gaussian-like distribution or a Rayleigh
distribution.

Furthermore, it is reasonable to assume that in a small range of values around the background
noise level, xs,t does not give any information to discriminate between activity and inactivity. Hence,

similarly to [10], we only model values above the mean square value
√

2 · σ2
0 + V 2

0 [12] of the silence
distribution Rσ0,V0 . Hence the “Shifted Rice” distribution for active sectors:

f1(x)
def
= p̂ (xs,t | cs,t = 1) (34)

= Rσ1,V1(x−
√

2 · σ2
0 + V 2

0 ). (35)

Mixture of Inactivity and Activity

The likelihood p̂ (xs,t | cs,t ) is expressed as:

p̂ (xs,t | cs,t )
def
= δ(cs,t − 0) · f0(x) + δ(cs,t − 1) · f1(x) (36)

where δ(x) = 1x=0 is the Kronecker function, (not to be confused with the zero-centered Dirac
distribution δ0). 1proposition is the indicator function: 1proposition = 1 if proposition is true, 0 otherwise

The priors are the weights w0 and w1:

w0
def
= P (cs,t = 0) (37)

w1
def
= P (cs,t = 1) (38)

Then the overall distribution of the data is expressed as:

f(xs,t)
def
= P (xs,t) (39)

= P (cs,t = 0) · p̂ (xs,t | cs,t = 0) + P (cs,t = 1) · p̂ (xs,t | cs,t = 1) (40)

= w0 · f0(xs,t) + w1 · f1(xs,t). (41)
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The complete model M is defined by the list of its parameters:

M
def
=

(

w0, w1, w
D
0 , wR

0 , σ0, V0, σ1, V1

)

. (42)

B.2 EM Derivation

B.2.1 General

In the E-step, the posteriors are computed using Bayes rule, for example, for a given set of parame-
ters M and a sample xs,t:

p
(0)
s,t (M)

def
= p̂ (cs,t = 0 | xs,t, M ) =

w0 · f0(xs,t)

w0 · f0(xs,t) + w1 · f1(xs,t)
(43)

p
(1)
s,t (M)

def
= p̂ (cs,t = 1 | xs,t, M ) = 1− p

(0)
s,t (M) (44)

Let us assume we have parameter values M = φ, in the M-step we look for new values φ̂ that

will increase the likelihood of the data given the model p̂
(

X
∣

∣

∣ M = φ̂
)

. We will write X and C the

random variables associated with the observed data x ≥ 0 and the inactive/active state c = 0 or 1.
For random variables X and C, the s and t indices are irrelevant since all data is modelled on a single
dimension, irrespective of space or time.

Let us write the KL divergence between the two distributions associated with current parameters
φ and new parameters φ̂, for a given realization of X :

KL
[

p (C | X, M = φ ) , p̂
(

C
∣

∣

∣ X, M = φ̂
)]

def
=

〈log p (C | X, M = φ )〉p(C | X,M=φ ) −
〈

log p̂
(

C
∣

∣

∣ X, M = φ̂
)〉

p(C | X,M=φ )

(45)

where letters p and p̂ represent the same function: they are only used to clarify where current param-
eters φ or new parameters φ̂ are used. In the following, φ and φ̂ are thus omitted whenever possible.
The mean 〈·〉· is calculated over all possible values of C (0 or 1). For example:

〈log p̂ (C | X )〉p(C | X ) =

1
∑

c=0

p (C = c | X ) · log p̂ (C = c | X ) (46)

Using Bayes rule to decompose the last term of Eq. 45, and using the fact that the KL divergence
is always positive:

log p̂ (X) ≥ −〈log p (C | X )〉p(C | X ) + 〈log p̂ (X, C)〉p(C | X ) (47)

the first term in the right hand side does not depend on φ̂, therefore, one way to increase the
likelihood log p̂ (X) is to find φ̂ that maximizes the second term 〈log p̂〉p. The latter decomposes into:

〈log p̂ (X, C)〉p(C | X ) = 〈log p̂ (X | C )〉p(C | X ) + 〈log p̂ (C)〉p(C | X ) (48)

To conclude, in the M-step our purpose is to find the parameter values φ̂ that maximizes the
likelihood of the observed data:

∑

s,t

log p̂ (X = xs,t) (49)

which, using Eqs. 47 and 48, can be done by maximizing Ξ1 + Ξ2, where:

Ξ1
def
=

∑

s,t

〈log p̂ (X = xs,t | C )〉
p(C | X=xs,t ) (50)

Ξ2
def
=

∑

s,t

〈log p̂ (C)〉p(C | X=xs,t ) (51)
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B.2.2 Specific

Let us express both terms Ξ1 and Ξ2 as a function of the new parameters φ̂ =
(

ŵ0, ŵ1, ŵ
D
0 , ŵR

0 , σ̂0, V̂0, σ̂1, V̂1

)

.

Ξ1 =
∑

s,t

1
∑

c=0

p
(c)
s,t · log p̂

(

X = xs,t

∣

∣

∣ C = c, φ̂
)

(52)

From Eqs. 32 and 35:

Ξ1 =
∑

s,t

1
∑

c=0

p
(c)
s,t · log fc

(

xs,t, φ̂
)

(53)

Ξ1 =
∑

s,t

p
(0)
s,t · log

(

ŵD
0 · δ0(xs,t) + ŵR

0 · Rσ̂0,V̂0
(xs,t)

)

(54)

+
∑

s,t

p
(1)
s,t · log

(

Rσ̂1,V̂1

(

xs,t −
√

2 · σ̂2
0 + V̂ 2

0

))

(55)

Ξ1 =
∑

s,t

xs,t=0

p
(0)
s,t · log ŵD

0 (56)

+
∑

s,t

xs,t>0

p
(0)
s,t · log ŵR

0 (57)

+
∑

s,t

xs,t=0

p
(0)
s,t · log δ0(xs,t) (58)

+
∑

s,t

xs,t>0

p
(0)
s,t · logR

σ̂0,V̂0
(xs,t) (59)

+
∑

s,t

xs,t>
√

2·σ̂2
0+V̂ 2

0

p
(1)
s,t (φ) · logRσ̂1 ,V̂1

(

xs,t −
√

2 · σ̂2
0 + V̂ 2

0

)

(60)

The term in log δ0(·) is not finite, but does not involve any parameter in φ̂. In the M-step, we therefore
maximize the “partial likelihood”, which is the sum of all other (finite) terms.

From Eqs. 37 and 38:

Ξ2 =
∑

s,t

1
∑

c=0

p
(c)
s,t · log p̂ (C = c) (61)

Ξ2 =
∑

s,t

p
(0)
s,t · log ŵ0 +

∑

s,t

p
(1)
s,t · log ŵ1 (62)

Our goal is to find φ̂ that maximimizes Ξ1 + Ξ2. From Eqs. 56, 57, 59, 60 and 62, we can see that:

• The priors ŵ0 and ŵ1 only appear in Ξ2 (Eq. 62).

• The weights ŵD
0 and ŵR

0 of the silence mixture only appear in Ξ1, in Eqs. 56 and 57.

• The remaining parameters
(

σ̂0, V̂0, σ̂1, V̂1

)

are tied in a non-linear fashion through Eqs. 59 and

60. Finding their value can be done through joint, numerical optimization (e.g. simplex search,
as in fminsearch in MATLAB) of the corresponding sum (59)+(60).
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Since ŵ1 = 1− ŵ0, we have:

∂Ξ2

∂ŵ0
=

∑

s,t

(

1

ŵ0
· p(0)

s,t +
1

1− ŵ0
· p(1)

s,t

)

. (63)

The new parameter ŵ0 does not appear in Ξ1, it is therefore the maximum of Ξ2 with respect to
w0, which necessitates ∂Ξ2

∂w0
(ŵ0) = 0, therefore:

ŵ0 =
P

s,t p
(0)
s,t

P

1
c=0

P

s,t
p
(c)
s,t

= 1
T ·S

∑

s,t p
(0)
s,t (64)

and ŵ1 = 1− ŵ0. This is the update of the priors of inactivity and activity.

Similarly, since ŵR
0 = 1− ŵD

0 , from Eqs. 56 and 57 we have the maximum ŵD
0 at the zero ∂Ξ1

∂ŵD
0

= 0,

which yields:

ŵD
0 =

∑

s,t

xs,t=0
p
(0)
s,t

∑

s,t

xs,t=0
p
(0)
s,t +

∑

s,t

xs,t>0
p
(0)
s,t

(65)

and ŵR
0 = 1− ŵD

0 . This is the update of the “inactivity” mixture weights.

B.2.3 Implementation Details

EM Implementation: in practice, we observed that the possibly large amount of data {xs,t} can
be conveniently reduced to a very small number of samples (e.g. 100) with approximately the same
distribution. This is done by ordering the samples (from min to max) and picking 100 samples at
regular intervals along the ordered list. This way the cost of each EM iteration is drastically reduced,
and is independent of the amount of data (e.g. 20 minutes of recording are reduced to 100 samples).

An additional speedup can be obtained by replacing, in the M-step, the numerical optimization

of
(

σ̂0, V̂0, σ̂1, V̂1

)

with a moment-based update similar to the initialization described below. This

way, the numerical optimization, which is itself a many-step process, is replaced with a direct, 1-step
analytical update. Although this is an approximation, we observed in practice that after convergence
of EM, the model parameters are almost the same as with the numerical optimization.

All results reported in the article for the 1-dimensional models use both simplifications. An example
of data distribution fitted with the 1-dimensional model is depicted by Fig. 13b.

Automatic Initialization: the data {xs,t} is arbitrarily splitted between Nlow (θ) low values
and Nhigh (θ) high values, using a threshold θ. The non-zero low values are used to initialize the
“inactivity” Rice distribution using the analytical moment-based approximation from [12]. This is
done by first computing the mean Ga and standard deviation Gv :

Ga =
1

Nlow

∑

s,t

xs,t<θ

xs,t (66)

Gv =









1

Nlow

∑

s,t

xs,t<θ

(xs,t −Ga)2









1
2

(67)

and the parameters of the “inactivity” Rice distribution are initialized as follows:

V
(init)
0 ←

[

max
(

0, G2
a −G2

v

)]
1
4 (68)

σ
(init)
0 ←

[

1

2
max

(

0, Ga −
(

V
(init)
0

)2
)]

1
2

(69)
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Figure 13: Fit of the 2-mixture model described in Section B: (a) automatic initialization, (b) final
model after convergence of EM.

The “activity” Shifted Rice distribution is initialized similarly using data above

max

(

θ,

√

2 ·
(

σ
(init)
0

)2

+
(

V
(init)
0

)2
)

. (70)

Finally, the mixture weights wD
0 and wR

0 are initialized by counting the number of zero samples
within the Nlow low values. Priors w0 and w1 are initialized as follows:

w
(init)
0 ← max

(

0.1, min

(

0.9,
Nlow

Nlow + Nhigh

))

(71)

w
(init)
1 ← 1− w

(init)
0 (72)

where the restriction to the [0.1, 0.9] interval avoids a “wrong” local maxima such as w
(init)
0 = 0.

In order to have a fully automatic initialization process, a series of thresholds θ1 · · · θNθ
are derived

from the data itself (e.g. Nθ = 30: 15 equal-interval percentiles and 15 equal intervals between
minimum and maximum). For each threshold θn, the moment-based initialization is done as explained
above and the likelihood of the whole data is computed. The initialization yielding the maximum
likelihood is selected, as depicted by Fig. 13a. This way, we avoid starting from a “wrong” local
maxima (e.g. the “inactive” component capturing all data and the “active” component capturing
none, or vice-versa).

C Multidimensional Model

This section describes a multidimensional model that models activeness for all sectors (x1,t · · ·xS,t)
jointly, at a given time frame t. It is used in Section 5. In many places, reasoning made in details in
the 1-dimensional case (Section B) is reused here in a brief form.

C.1 Description

As explained in Section 2, for a given time frame t, all values sum to a constant:
∑

s xs,t = Nbins.
This knowledge is enough to expect two cases:

• At a given time frame t, there is no activity. Then, as explained in B.1, the Nbins bins of the
frequency spectrum are attributed to the various sectors in a uniformly random fashion. It
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continuous

Figure 14: Graphical model for the independence assumptions used in the multidimensional model.
A is the frame state (inactive or active) and Cs is the state of a given sector s (inactive or active). Xs

is the observed data for sector s. On an active frame (A = 1) at least one sector is active (Cs = 1).

is therefore expected that xs,t will be Nbins/S in average. As mentioned in B.1, the Gamma
distribution fits well (visual trials on real data), which is defined as:

Gγ,β(x)
def
=

xγ−1 · e− x
β

βγ · Γ(γ)
(73)

where γ > 0, β > 0 and Γ is the gamma function:

Γ(γ)
def
=

∫ +∞

0

tγ−1e−tdt (74)

In this case, we could expect the average γβ = Nbins

S
.

• At a given time frame t, at least one sector contains at least one active wideband source (e.g.
speech source). In such a case, the xs,t values corresponding to active sector(s) will be larger
than the average Nbins/S, thus leaving less frequency bins to be randomly attributed to inactive
sectors. We propose to model those values with a ( Gamma + Shifted Rice ) mixture, similarly
to Section B.1. For the Gamma distribution, we could expect that γβ < Nbins

S
.

Similarly to C, let us define the binary random variable “frame state” A = 0 or 1, which indicates
whether at least one sector is active in a given time frame. A realization at of A is defined by:

at
def
= max

1≤s≤S
cs,t (75)

Next, we define the random variables X1 · · ·XS associated with activeness values of all sectors, for a
given time frame. We then need to express p (X1 · · ·XS | A, M ).

We assume that the knowledge of the frame state A is enough (the two cases mentionned above),
and that further interdependences between the various values

X1:S
def
= (X1 · · ·XS) (76)

need not to be modelled. This amounts to a simplifying conditional independence assumption:

p (X1:S | A, M ) ≈
S
∏

s=1

p (Xs | A, M ) (77)

as illustrated in Fig. 14.
With the same justification, we also make the following conditional independence assumption. For

a given sector s:

p (Cs | X1:S, A ) ≈ p (Cs | Xs, A ) (78)

These two assumptions are used in the EM derivation (Section C.2).
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C.1.1 Inactive sector: Dirac + Gamma

Similarly to B.1.1, we model inactivity of a sector with a (Dirac + Gamma) mixture. Two such
mixtures g00 and g01 are defined, depending on the state of the frame: inactive frame A = 0 or active
frame A = 1:

p (Xs | Cs = 0, A = 0, M ) ∼ g00 (x) (79)

p (Xs | Cs = 0, A = 1, M ) ∼ g01 (x) (80)

where:

g00 (x)
def
= vD

00 · δ0(x) + vG
00 · Gγ00,β00 (x) (81)

g01 (x)
def
= vD

01 · δ0(x) + vG
01 · Gγ01,β01 (x) (82)

We further constrain γ00 > 1 and γ01 > 1 so that Gγ00,β00(0) = 0 and Gγ01,β01(0) = 0. This way,
zero values and strictly positive values are separately modelled by the Dirac and Gamma functions.
(vD

00, v
G
00) and (vD

01, v
G
01) are the weights the g00 and g01 mixtures, respectively.

C.1.2 Active sector: Shifted Rice

Similarly to Section B.1.2, we model an active sector with a shifted Rice distribution, where the shift
is equal to the first moment γ01β01 of the Gamma distribution G01:

p (Xs | Cs = 1, A = 1, M ) ∼ g11 (x) (83)

where:

g11 (x)
def
= Rσ11 ,V11(x− γ01β01). (84)

C.1.3 Complete model

Let v0 and v1 denote the frame-level priors (v0 + v1 = 1):

v0
def
= p (A = 0 | M ) (85)

v1
def
= p (A = 1 | M ) . (86)

Let v01 and v11 denote the sector-level conditional priors (v01 + v11 = 1), given that a frame is active:

v01
def
= p (Cs = 0 | A = 1, M ) (87)

v11
def
= p (Cs = 1 | A = 1, M ) . (88)

The complete model is defined by the parameters:

M
def
=

(

v0, v1, v01, v11, v
D
00, v

G
00, γ00, β00, v

D
01, v

G
01, γ01, β01, σ11, V11

)

. (89)

From Eqs. 77, 81, 82, 84, 85, 86, 87, 88, the complete model can be written as follows.
The priors of frame state:

p (A) = v
δ(A−0)
0 · vδ(A−1)

1 (90)

where δ is the Kronecker function (not to be confused with the Dirac distribution δ0).
The priors of sector state, for one sector s:

p (Cs | A ) = δ (A− 0) · δ (Cs − 0) + δ (A− 1) · vδ(Cs−0)
01 · vδ(Cs−1)

11 (91)
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The likelihood of the data for one sector s, given the frame and sector states:

p (Xs | A, Cs ) = δ (A− 0) δ (Cs − 0) ·
[

vD
00 · δ0 (Xs) + vG

00 · Gγ00,β00 (Xs)
]

+ δ (A− 1) δ (Cs − 0) ·
[

vD
01 · δ0 (Xs) + vG

01 · Gγ01,β01 (Xs)
]

+ δ (A− 1) δ (Cs − 1) · [Rσ11 ,V11 (Xs − γ01β01)]

(92)

C.2 EM Derivation

C.2.1 E step

In the E-step, we need to estimate posteriors of the (A = 1) and (A = 1, Cs = 1) events. Posteriors of
other events (A = 0) and (A = 1, Cs = 0) are their respective 1-complements.

The first one is directly obtained from Bayes rule:

p (A = 1 | X1:S, M ) =
p (X1:S | A = 1, M ) · v1

p (X1:S | A = 0, M ) · v0 + p (X1:S | A = 1, M ) · v1
(93)

and each of the 3 terms p (X1:S | A, M ) expands as a product of individual likelihoods, given by
Eq. 77. Note that in the case of a zero value Xs = 0, an (indefinite) Dirac term will appear in all 3
terms, hence it simplifies out and only the corresponding (finite) Dirac weights remain.

The second one can be obtained from the following decomposition:

p (A, Cs | X1:S , M ) = p (Cs | A, X1:S , M ) · p (A | X1:S, M ) (94)

which, using the assumption made in Eq. 78, becomes:

p (A, Cs | X1:S , M ) = p (Cs | A, Xs, M ) · p (A | X1:S , M ) (95)

The second term is given by Eq. 93, and the first one develops into:

p (Cs | Xs, A, M ) =
p (Xs, Cs, A | M )

p (Xs, A | M )
(96)

=
p (Xs | Cs, A, M ) · p (Cs | A, M ) · p (A | M )

p (Xs, A | M )
(97)

=
p (Xs | Cs, A, M ) · p (Cs | A, M )

p (Xs | A, M )
(98)

This decomposition is valid for both (A = 1, Cs = 0) and (A = 1, Cs = 1) events, hence:

p (Cs = 1 | A = 1, Xs, M ) =
p (Xs | Cs = 1, A = 1, M ) · p (Cs = 1 | A = 1, M )

∑1
c=0 p (Xs | Cs = c, A = 1, M ) · p (Cs = c | A = 1, M )

(99)

p (Cs = 1 | A = 1, Xs = x, M ) =
g11 (x) · v11

g01 (x) · v01 + g11 (x) · v11
(100)

C.2.2 M step

As for the M-step, the KL divergence

KL
[

p (Cs, A | X1:S, M = φ ) , p̂
(

Cs, A
∣

∣

∣ X1:S , M = φ̂
)]

(101)

can be written similarly to Eq. 45, where φ and φ̂ are the current parameters and new parameters,
respectively. Similarly to Section B.2.1, a lower bound on the likelihood of the observed data can be
found using the fact that the KL divergence is always positive:

∑

t

log p̂ (X1:S = xt) ≥
∑

t

〈log p̂ (X1:S = xt, C1:S , A)〉p(C1:S,A | X1:S=xt ) (102)
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where xt = (x1,t · · ·xS,t)
T

is the vector of activeness values for all sectors, in the time frame t, and

C1:S = (C1 · · ·CS)
T

is the corresponding vector of sector states (zeroes and ones).

From the decomposition:

p̂ (X1:S , C1:S , A) = p̂ (X1:S | C1:S , A ) · p̂ (C1:S | A ) · p̂ (A) , (103)

the right hand side (RHS) in Eq. 102 can be decomposed into a sum of 3 terms Ψ1 + Ψ2 + Ψ3, where:

Ψ1
def
=

∑

t

〈log p̂ (X1:S = xt | C1:S , A )〉p(C1:S ,A | X1:S=xt ) (104)

Ψ2
def
=

∑

t

〈log p̂ (C1:S | A )〉p(C1:S ,A | X1:S=xt ) (105)

Ψ3
def
=

∑

t

〈log p̂ (A)〉p(C1:S ,A | X1:S=xt ) (106)

The aim of the M-step is to find new parameter values φ̂ that will maximize the sum Ψ1 +Ψ2 +Ψ2,
in order to increase the overall likelihood of the observed data. From an independence assumption
between the sectors, conditioned by A, similarly to Eq. 77:

Ψ1 =
∑

s,t

〈log p̂ (Xs = xs,t | Cs, A )〉
p(C1:S , A | X1:S=xt ) (107)

which can be shown to be equal to:

Ψ1 =
∑

s,t

〈log p̂ (Xs = xs,t | Cs, A )〉
p(Cs, A | X1:S=xt ). (108)

Under similar independence assumptions between the sectors, conditioned by A:

Ψ2 =
∑

s,t

〈log p̂ (Cs | A )〉
p(Cs, A | X1:S=xt ). (109)

Finally, since A does not depend on C1:S :

Ψ3 =
∑

t

〈log p̂ (A)〉p(A | X1:S=xt ). (110)

Considering the definition of the model (Eqs. 90 to 92), it can be shown that:

• The priors v0 and v1 only appear in Ψ3, under a form similar to w0 and w1 in Ξ2 (Section B.2.2).

• The conditional priors v01 and v11 only appear in Ψ2, under a form similar to w0 and w1 in Ξ1

(Section B.2.2).

• The mixture weights
(

vD
00, v

G
00

)

,
(

vD
01, v

G
01

)

only appear in Ψ1, both of them under a form similar

to
(

wD
0 , wR

0

)

in Ξ1 (Section B.2.2).

• The parameters γ00, β00 appear only in Ψ1, not tied to any other parameter.

• The parameters γ01, β01, σ11, V11 appear only in Ψ1 and are tied in a non-linear fashion, similarly
to the Rice and Shifted Rice in Section B.2.2.

Reasoning similar to Section B.2.2 leads to the following update equations.
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For the frame-level priors:

v̂0 =

∑

s,t p
(0)
s,t

∑

s,t p
(0)
s,t +

∑

s,t p
(1)
s,t

(111)

=
1

T · S
∑

s,t

p
(0)
s,t (112)

and v̂1 = 1− v̂0.
For the sector-level conditional priors:

v̂01 =

∑

s,t p
(10)
s,t

∑

s,t p
(10)
s,t +

∑

s,t p
(11)
s,t

(113)

and v̂11 = 1− v̂01.
For the “inactive frame, inactive sector” (Dirac + Gamma) mixture weights:

v̂D
00 =

∑

s,t

xs,t=0
p
(00)
s,t

∑

s,t

xs,t=0
p
(00)
s,t +

∑

s,t

xs,t>0
p
(00)
s,t

(114)

and v̂G
00 = 1− v̂D

00. Replacing “00” with “10” gives the update equations for v̂D
01 and v̂G

01.
Parameters γ00 and β00 are updated within the {γ00 > 1, β00 > 0} space through numerical opti-

mization, by maximizing the following sum (e.g. using the simplex method):

∑

s,t

xs,t>0

p
(00)
s,t · logGγ00,β00 (xs,t) (115)

Parameters γ01, β01, σ11 and V11 are updated within the {γ01 > 1, β01 > 0, σ11 > 0, V11 ≥ 0} space,
through numerical optimization, by maximizing the following sum:

∑

s,t

xs,t>0

p
(10)
s,t · logGγ01,β01 (xs,t) +

∑

s,t

xs,t>γ01β01

p
(11)
s,t · logRσ11 ,V11 (xs,t − γ01β01) (116)

C.2.3 Implementation Details

EM Implementation: similarly to Section B.2.3, the possibly large data (e.g. 70000 frames for
20 minutes) is reduced to a fixed, small number of frames (e.g. 1000), by first ordering the frames {xt}
and then picking 1000 frames at equal intervals along the ordered list This necessitates the definition
of an order between vectors {xt}. We are trying to keep approximately the same distribution of
frames as in the original data, from the very inactive frames to the very active frames. Thus, data
reduction is done by ordering frames t = 1 · · ·T based on their maximum value maxs (xs,t). This way
the computational cost of one EM iteration is drastically reduced, and it is independent of the size of
the data.

As for the M-step, contrary to the 1-dimensional case, we found in practice that using the exact

(likelihood increase is guaranteed), numerical optimization of the tied parameters, or using a moment-
based approximation produced quite different results.

Overall the above-described data reduction and the numerical optimization are used for all multi-
dimensional results reported in this paper.

Initialization: an approach similar to Section B.2.3 is used. For the initialization only, all data
is stacked into a 1-dimensional histogram, and considered as a mixture of a Gamma with param-
eters γ(init), β(init) and a Shifted Rice with shift γ(init)β(init). As in Section B.2.3, moment-based
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Figure 15: Fit of the multidimensional model described in Section C: (a) automatic initialization,
(b) final distributions G00,G01,R11 and g after convergence of EM.

methods are used to initialize the Gamma, then the Shifted Rice, within an automatic, multiple
initialization approach.

Finally both G00 and G01 are initialized with the same parameters γ(init), β(init).
Figs. 15a and 15b respectively depict an example of automatic initialization, and the final distri-

butions after convergence of EM.
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