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Electronically steerable arrays of microphones have a variety of uses in speech data ac-
quisition systems. Applications include teleconferencing, speech recognition and speaker
identification, sound capture in adverse environments, and biomedical devices for the hear-
ing impaired. An array of microphones has a number of advantages over a single-microphone
system. It may be electronically aimed to provide a high-quality signal from a desired source
location while simultaneously attenuating interfering talkers and ambient noise, does not
necessitate local placement of transducers or encumber the talker with a hand-held or
head-mounted microphone, and does not require physical movement to alter its direction
of reception. Additionally, it has capabilities that a single microphone does not; namely
automatic detection, localization, and tracking of active talkers in its receptive area. A
fundamental requirement of sensor array systems is the ability to locate and track a speech
source. An accurate fix on the primary talker, as well as knowledge of any interfering talk-
ers or coherent noise sources, is necessary to effectively steer the array. Source location
data may also be used for purposes other than beamforming; e.g. aiming a camera in a
video-conferencing system. In addition to high accuracy, the location estimator must be
capable of a high update rate as well as being computationally non-demanding in order to
be useful for real-time tracking and beamforming applications.

This thesis addresses the specific application of source localization algorithms for es-
timating the position of speech sources in a real room environment given limited compu-

tational resources. The theoretical foundations of a speech source localization system are



presented. This includes the development of a source-sensor geometry for talkers and sensors
in the near-field environment, the evaluation of several error criteria available to the prob-
lem, and the detailing of source detection and estimate-error prediction methods. Several
practical algorithms necessary for real-time implementation are then developed, specifically
the derivation and evaluation of an appropriate time-delay estimator and a novel closed-
form locator. Finally, results obtained from several real systems are presented to illustrate
the effectiveness of the proposed source localization techniques as well as to confirm the

practicality of the theoretical models.
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Chapter 1

Background, Motivation, and

Scope

1.1 Sensor Arrays for Speech-Related Applications

A steerable array of microphones has the potential to replace the traditional head-mounted
or desk-stand microphone as the input transducer system for acquiring speech data in many
applications. An array of microphones has a number of advantages over a single-microphone
system. First, it may be electronically aimed to provide a high-quality signal from a desired
source location while it simultaneously attenuates interfering talkers and ambient noise. In
this regard, an array has the potential to outperform a single, well-aimed, highly-directional
microphone. Second, an array system does not necessitate local placement of transducers,
will not encumber the talker with a hand-held or head-mounted microphone, and does
not require physical movement to alter its direction of reception. These features make it
advantageous in settings involving multiple or moving sources. Finally, it has potential

capabilities that a single microphone does not; namely automatic detection, location, and



tracking of active talkers in its receptive area. Existing array systems have been used in a
number of applications. These include teleconferencing [1, 2, 3, 4], speech recognition [5, 6,
7, 8], speaker identification [9], speech acquisition in an automobile environment [10, 11],
sound capture in reverberant enclosures [12, 13, 14], large-room recording-conferencing [15],
acoustic surveillance [16, 17], and hearing aid devices [18]. These systems also have the
potential to be beneficial in several other environments, the performing arts and sporting
communities, for instance.

An essential requirement of these sensor array systems is the ability to locate and track
a speech source. For audio-based applications, an accurate fix on the primary talker, as well
as knowledge of any interfering talkers or coherent noise sources, is necessary to effectively
steer the array, enhancing a given source while simultaneously attenuating those deemed
undesirable. Location data may be used as a guide for discriminating individual speakers
in a multi-source scenario. With this information available, it would then be possible to
automatically focus upon and follow a given source on an extended basis. Of particular
interest lately, is the application of the speaker location estimates for aiming a camera or
series of cameras in a video-conferencing system. In this regard, the automated localization
information eliminates the need for a human or number of human camera operators.

In addition to high accuracy, these delay estimates must be updated frequently in order
to be useful in practical tracking and beamforming applications. Consider the problem
of beamforming to a moving speech source. It has been shown that for sources in close
proximity to the microphones, the array aiming location must be accurate to within a
few centimeters to prevent high-frequency rolloff in the received signal [19]. An effective
beamformer must therefore be capable of including a continuous and accurate location

procedure within its algorithm. This requirement necessitates the use of a location estimator



capable of fine resolution at a high update rate. Additionally, any such estimator would

have to be computationally non-demanding to make it practical for real-time systems.

1.2 Source Localization Strategies

Existing source localization procedures may be loosely divided into three general cate-
gories: those based upon maximizing the output power of a steered-beamformer, techniques
adopting high-resolution spectral estimation concepts, and approaches employing only time-
difference of arrival (TDOA) information. These broad classifications are delineated by their
application environment and method of estimation. The first refers to any situation where
the location estimate is derived directly from a filtered, weighted, and summed version of
the signal data received at the sensors. The second will be used to term any localization
scheme relying upon an application of the signal correlation matrix. The last category in-
cludes procedures which calculate source locations from a set of delay estimates measured

across various combinations of sensors.

1.2.1 Steered-Beamformer-Based Locators

The first categorization applies to passive arrays for which the system input is an acoustic
signal produced by the source. The optimal Maximum Likelihood (ML) location estima-
tor in this situation amounts to a focused beamformer which steers the array to various
locations and searches for a peak in output power. Termed ‘focalization’, derivations of the
optimality of the procedure and variations thereof are presented in [20, 21, 22]. Theoreti-
cal and practical variance bounds obtained via focalization are detailed in [20, 21, 23] and
the steered-beamformer approach was been extended to the case of multiple-signal sources

n [24]. The optimality of each of these procedures is dependent upon a priori knowledge of



the spectral content of both the primary signal and background noise. However, in practice
this information is rarely available. The physical realization of the ML estimator requires
the solution of a nonlinear optimization problem. The use of standard iterative optimiza-
tion methods, such as steepest descent and Newton-Raphson, for this process was addressed
by [24]. A shortcoming of each of these approaches is that the objective function to be min-
imized does not have a strong global peak and frequently contains several local maxima. As
a result, this genre of efficient search methods is often inaccurate and extremely sensitive
to the initial search location. In [25] an optimization method appropriate for a multimodal
objective function, Stochastic Region Contraction (SRC), was applied specifically to the
talker localization problem. While improving the robustness of the location estimate, the
resulting search method involved an order of magnitude more evaluations of the objective
function in comparison to the less robust search techniques. Overall, the computational re-
quirements of the focalization-based ML estimator, namely the complexity of the objective
function itself as well as the relative inefficiency of an appropriate optimization procedure,
prohibit its use in the majority of practical, real-time source locators.

The practical shortcomings of applying correlation-based localization estimation tech-
niques without a great deal of intelligent pruning is typified by the system produced in [26].
In this work a sub-optimal version of the ML steered-beamformer estimator was adapted
for the talker-location problem. A source localization algorithm based on multirate inter-
polation of the sum of cross-correlations of many microphone pairs was implemented in
conjunction with a real-time beamformer. However, because of the computational require-
ments of the procedure, it was not possible to obtain the accuracy and update rate required

for effective beamforming in real-time given the hardware available.



1.2.2 High-Resolution Spectral-Estimation-Based Locators

This second categorization of location estimation techniques includes the modern beamform-
ing methods adapted from the field of high-resolution spectral analysis: autoregressive (AR)
modeling, minimum variance (MV) spectral estimation, and the variety of eigenanalysis-
based techniques (of which the popular MUSIC algorithm is an example). Detailed sum-
maries of these approaches may be found in [27, 28]. While these approaches have suc-
cessfully found their way into a variety of array processing applications, they all possess
certain restrictions that have been found to limit their effectiveness with the speech-source
localization problem addressed here.

Each of these high-resolution processes is based upon the spatiospectral correlation ma-
trix derived from the signals received at the sensors. When exact knowledge of this matrix
is unknown (which is most always the case), it must be estimated from the observed data.
This is done via ensemble averaging of the signals over an interval in which the sources and
noise are assumed to be statistically stationary and their estimation parameters (location
in this case) are assumed to be fixed. For speech sources, fulfilling these conditions while
allowing sufficient averaging can be very problematic in practice. These algorithms tend to
be significantly less robust to source and sensor modeling errors than conventional beam-
forming methods [29, 30]. The incorporated models typically assume ideal source radiators,
uniform sensor channel characteristics, and exact knowledge of the sensor positions. Such
conditions are impossible to obtain in real-world environments. While the sensitivity of
these high-resolution methods to the modeling assumptions may be reduced, it is at the
cost of performance. Additionally, signal coherence, such as that created by a multipath
condition, is detrimental to algorithmic performance, particularly that of the eigenanalysis

approaches. This situation may be improved via signal processing resources, but again at



the cost of decreased resolution[31]. With regard to the localization problem at hand, these
methods were developed in the context of far-field plane waves projecting onto a linear ar-
ray. While the MV and MUSIC algorithms have been shown to be extendible to the case of
general array geometries and near-field sources [32], the AR model and certain eigenanalysis
approaches are limited to the far-field, uniform linear array situation. Finally, there arises
the issue of computational expense. A search of the location space is required in each of
these scenarios. While the computational complexity at each iteration is not as demanding
as the case of the steered-beamformer, the objective space typically consists of sharp peaks.
This property precludes the use of iteratively efficient optimization methods. The situation
is compounded if a more complex source model is adopted (incorporating source orienta-
tion or head radiator effects, for instance) in an effort to improve algorithm performance.
Additionally, it should be noted that these high-resolution methods are all designed for
narrowband signals. They can be extended to wideband signals, including speech, either
through simple serial application of the narrowband methods or more sophisticated gen-
eralizations of these approaches, such as [33, 34, 35]. Either of these routes extends the

computational requirements considerably.

1.2.3 TDOA-Based Locators

With this third localization strategy, the measure in question is not the acoustic data re-
ceived by the sensors, but rather a set of relative delay estimates derived from the time
signals. This approach to finding a source location has been adopted for a variety of appli-
cations where a single source may be assumed to be present in the operating environment.
These applications range from navigational systems [36, 37] where the TDOA information

is calculated from clocking signals transmitted from various known transmitter positions to



sonar devices [38] in which the time delays must be estimated from underwater acoustic
signals detected by passive hydrophones. For the locators in this class, the TDOA and
sensor position data are used to generate hyperbolic curves which are then intersected in
some optimal sense to arrive at a source location estimate. A number of variations on this
principle have been developed [39, 40, 41, 42, 43, 44, 45, 46]. They differ considerably in the
method of derivation, the extent of their applicability (2-D vs. 3-D, near source vs. distant
source, etc.), and their means of solution.

Given solely a set of TDOA figures with known error statistics, obtaining the ML loca-
tion estimate necessitates solving a set of nonlinear equations. The calculation of this result
can be quite cumbersome and computationally expensive, though considerably less so in
either of these respects than estimators belonging to the two previously discussed genres.
An exact solution is given in [47] for the situation where the number of TDOA estimates
is equal to the number of spatial dimensions. However, this solution does not accommo-
date extra sensor measurements. Iterative methods which start with an initial guess and
successively approximate the optimal solution via a local linear least-square (LLS) estimate
at each step in the procedure exist [48, 49, 40]. These methods require an LLS matrix
calculation at each iteration, are not guaranteed to converge in many instances, and tend
to be sensitive to the choice of an initial guess. Finally, there is an extensive class of sub-
optimal, closed-form location estimators [39, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55]
designed to approximate the exact solution to the nonlinear problem. These techniques are
computationally undemanding and, in many cases, suffer little detriment in performance
relative to their more compute-intensive counterparts.

Regardless of the solution method employed, this third class of location estimation

techniques possesses a significant computational advantage over the steered-beamformer or



high-resolution spectral-estimation based approaches. However, TDOA-based locators do
present several disadvantages when used as the basis of a general localization scheme. For
the case of acoustic sources where a time signal is available, this two-stage process requiring
time-delay estimation prior to the actual location evaluation is suboptimal. The intermedi-
ate signal parameterization accomplished by the TDOA procedure represents a significant
data reduction at the expense of a decrease in theoretical localization performance. However,
in real situations the performance advantage inherent in the optimal steered-beamformer
estimator is lessened because of incomplete knowledge of the signal and noise spectral con-
tent as well as unrealistic stationarity assumptions. In practice, the computational savings
afforded by these less intensive procedures can far outweigh the moderate decline in pre-
cision. The primary limitation of delay-based locators is their inability to accommodate
multi-source scenarios. These algorithms assume a single-source model. The presence of
several simultaneous radiators and/or coherent noise sources in the sensor field typically
results in ill-defined TDOA figures and unreliable location fixes. A TDOA-based locator
operating in such an environment would require a means for evaluating the validity and

accuracy of the delay and location estimates.

1.3 Elements of the Speech-Source Localization Problem

This thesis addresses the specific application of source localization algorithms for estimating
the position of one or more speech sources in a real-room environment. It is assumed that
limited degree of computational resources are available and that the quantity and placement
of the sensors are constrained.

A speech source, whether associated with a human talker or mechanical transducer, does

not represent an ideal, spherical radiator. In the case of a room-size, near-field environment,



any realistic source possesses a clear degree of directionality and spatial attenuation. This
implies that a sensor which the talker is facing will tend to receive a stronger signal than
those off to the side or physically behind the source. Similarly, remote sensors will be
exposed to a relatively attenuated signal by virtue of the additional propagation distance.
Other more subtle factors, such as the room acoustics, non-uniformity of the sensor channels,
features of the talker’s head and body, as well as the actual content of the speech can
introduce deviations from the ideal radiator case and pose serious difficulties to accurately
modeling the speech sources.

The computational liabilities and the inability to realistically model the speech sources
under a wide variety of conditions prevent the use of either of the first two genres of
source locators discussed for this scenario. The approach taken throughout this work will
be to employ a two-stage localization procedure; delay estimation followed by a location
evaluation. Although Chapter 8 presents a delay estimator specifically intended for this
speech source environment, the majority of this thesis will focus on the latter process
assuming that the TDOA figures are already available. Studying the problem from this
perspective has several clear advantages over the stated alternatives. It is computationally
non-intensive and may be parallelized in a straightforward manner. By not being overly
dependent upon specific modeling conditions, it is robust and applicable to a range of
situations. Furthermore, as will be demonstrated, the shortcomings associated with these
techniques, most notably the difficulties with multiple coherent sources, may be overcome
in practice through judicious use of appropriate detection methods at each stage in the
process.

Each of the localization methods to be presented are based upon a specific source-

sensor geometry; the basic unit of which consists of a pair of closely-spaced sensors and a



single delay estimate associated with the potential source. Delay estimates are evaluated
exclusively with respect to the particular sensor pair. There is no attempt made to define
TDOA values relative to a single reference sensor or an absolute scale. This philosophy
is motivated by several arguments. Primarily, in a near-field source environment such as
this, source directionality can create significant signal dissimilarities at spatially distant
sensors. In the interest of obtaining accurate and reliable TDOA estimates, the individual
sensors in each pair must be kept close together. Additionally, as will be shown in the
following chapters, the precision of the location estimate is dependent upon the placement
of the sensors relative to the actual source location. In general, this may necessitate placing
sensors in a wide variety of positions throughout the enclosure. Given only a fixed number
of available sensors and the requirement of spatially local sensor pairs, it is not prudent
and frequently not possible, to evaluate all the TDOA figures relative to a single sensor
location. The sensor-pair geometry advocated in Chapter 2 addresses the problem of source

localization given these autonomous sensor pair-TDOA units.

1.4 Scope of This Work

The topics in this thesis have been grouped into two distinct parts. The first set of chapters
are devoted to presenting the theoretical foundations of a speech source localization system.
These methods take as their input a set of TDOA values and their associated variance
figures as estimated across various combinations of sensor pairs. In Chapter 2 a source-
sensor geometry appropriate for talkers and sensors in the near-field environment is detailed.
Chapter 3 offers and evaluates several error criteria available to the problem. Chapters 4
and 5 provide methods for detecting the presence of a single source and evaluating the error

region associated with a given location estimate, respectively. The second set of chapters
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gives a performance analysis of these techniques in a real environment as well as illuminating
several practical algorithms necessary for a real-time development. Chapter 6 contains some
discussion of the computational aspects of these techniques. A novel closed-form locator
is the subject of Chapter 7, while Chapter 8 contains the derivation and evaluation of a
time-delay estimator intended specifically for the speech source environment. Chapter 9
is the culmination of this thesis, bringing together its individual facets within the context
of several experiments incorporating physical systems. Results are presented to illustrate
the effectiveness of the proposed source localization techniques as well as confirming the
practicality of the theoretical models. Finally, Chapter 10 contains some conclusions and

topics for further study.

11



Part 1

Theory
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Chapter 2

Source-Sensor Geometry

Consider the " pair of sensors, m;; and m;y, with spatial coordinates (x,y, z) denoted by
the vectors, m;;, my; € R3, respectively. The unit vector through m;; and m;, is denoted

by @; ! and m; will be used to designate the midpoint of the sensors:

_ m;; — Mo
a = ——Mm
|mi1 - mi2|
m; = m (2.1)

where |-| is the Euclidean distance measure. In general, the pressure waves of a signal source
radiating in this region will require a specific period of time to propagate to each sensor.
Given that the radiator may be modeled as a point source and the medium is uniformly
ideal, these propagation times are directly related to the source’s distance from the specific
sensor. The constant of proportionality being the speed of propagation in the medium, ec.

(In air the speed of sound is ¢ = 342%.) In practice, the absolute propagation times are

'In what follows, the notational convention adopted will be to designate vectors of ordered triplets with
boldface, lowercase characters while the vectors corresponding to directed lines will be denoted by boldface,
lowercase characters with an overline. In each case, the standard vector operations will apply and the
difference in application will be clear from the context.
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Figure 2.1: Locus of potential source locations with a fixed delay & for the i** sensor-TDOA
combination (x; = y({mi1, m;2}, 7 = k)) (a) and those for the cone approximation to y;

(b).
unavailable and only the time difference of arrival (TDOA) relative to the i'" sensor pair
may be measured.

Given a signal source with known spatial location s € R?, the true TDOA relative to the

it" sensor pair will be denoted by T'({m;;, m;,},s), and is calculated from the expression:

|s —mg| — |s — my

T({m;1, mp},s) = (2.2)

c

The estimate of this true TDOA, the result of a time-delay estimation procedure involving
the signals received at sensors m;; and myy, will be given by 7;. In practice, the TDOA
estimate is a corrupted version of the true TDOA and in general, 7; # T'({m;1, m;2}, s).
For the parametric-based localization scheme addressed here, the problem is one of
estimating the source location given only the TDOA estimate information. With a single
sensor-pair, TDOA-estimate combination the locus of potential source locations is defined
to be all spatial locations s for which the equation 7; = T'({m;;, m;3}, s) is satisfied and will
be designated by x({mj;i, m;2}, 7;), or simply abbreviated by x;. The physical constraints

of this problem demand that |c¢ - 7;| < |m;z; — my| and correspondingly the set y; is a
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Figure 2.2: Spherical coordinate system defined relative to the sensor pair m;y, m;s.

continuum. In 3-space a plot of y; generates one-half of a hyperboloid of two sheets.
This hyperboloid is centered about m; and has a; as its axis of symmetry. This situation
is depicted in Figure 2.1a. In general, knowledge of a single sensor-pair, TDOA-estimate
combination does not specify a unique source location, it only restricts the potential location
to a hyperboloid in 3-space.

In an effort to analyze the nature of y; in more detail, spherical coordinate system is
established with origin m; and a; as one axis. See Figure 2.2. As a consequence of the
symmetry in the following analysis, the remaining axes need not be specified, apart from
their orthogonality to @; and each other. With this system, any point p € R> may be
uniquely specified by P(r, 8, ¢), where r is the range of the point (i.e. its distance from the
origin), € is the angle formed by the base vector to the point and the a; axis, and ¢ is the
angle formed by the projection of the base vector into the plane normal to a; relative to one
of the unspecified axes. The formations to be discussed here all possess a symmetry about
the a; axis and will thus be independent of the coordinate ¢.

In terms of this spherical coordinate system, the half-hyperboloid of locus points p =
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P(r,8,¢) € x; must satisfy the relation:

cos? 9 sin? @ 1
= — (2.3)

(c-7)? B |lm; — m|?2 — (c-7)?  4r?

Note that this equation is independent of the sign of ;. It corresponds to a full hyperboloid
of two-sheets. To be thorough, the sign of 7, must be retained to specify the appropriate

half of the hyperboloid.

For large r, the hyperboloid asymptotically converges to the cone expressed by:

cos? 6 sin? @

_ = 2.4
(c-m)?  |my—mpl|?—(c-7)? 0 (2.4)

or equivalently:

§ = cos™! (L) =46 (2.5)

|mi2 - mi1|

With this coordinate system, a cone with its vertex at the origin is expressed by the
simple equation: # = constant. For the case of the i** sensor-pair, TDOA-estimate combi-
nation, this constant is the arccosine of the ratio of the scaled TDOA to the total sensor
separation. It may be desirable to express the locus of possible source locations, y;, in
terms of this single parameter, i.e. approximating the hyperboloid by its corresponding
cone. This situation is illustrated in Figures 2.1a and 2.1b. In making such an approxima-
tion, the actual locus points (those on the hyperboloid) are displaced in position through
the mapping from hyperboloid to cone. Intuitively, these distortions are most extreme for
locus points close to the sensors and decrease dramatically for those locations at a greater
range. To verify this intuition, consider a constant-¢ cross-section of a cone-hyperboloid

pair as depicted in Figure 2.3.
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Cone Approximation

Figure 2.3: Constant-¢ Cross-section of cone-hyperboloid pair showing the angle distortion,
6; — 1, and total distance distortion, D(R, ), associated with approximating a point p € y;
by the the corresponding cone.

Here p € x; has coordinates (r,#) = (R,%) and is a solution of Equation 2.3. The
corresponding cone is given by 8 = 6;. Expressions for the angle distortion, #; — 1, and
the total distance distortion, D(R, 1) = Rsin(6; — 1), are developed by combining Equa-
tions 2.3 and 2.5 to obtain:

cos?tp  sin? _my - 1fn2'1|2
cos? 8, sin%6;, 4R?

which after some work, simplifies to:

sin2(20i) - |myp — 1fn2'1|2

Sin(ei - ¢) = sin(@i n ¢) .16 R2

(2.6)

Equation 2.6 relates the angle distortion to the locus point’s range and angle. An

ks

analysis of this relation, reveals that the angle difference, 8; — ¢, has minima at ¢» =0, 2, 7

Z. The worst case

(the end-fire and broadside conditions) and is maximized for ¢ =~ 0; ~ J
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angle and total distance distortions are then well-approximated by the expressions:

|mi2 - mi1|2

max{f; — ¥} =~ 62 (2.7)
e . 2
max{D(R, )} =~ % (2.8)

The maximum angle distortion varies linearly with the square of the sensor separation to
source range ratio. Hence, given only an anticipated minimum source range, the worst case
errors associated with the cone approximation may be calculated. In practice, these errors
are quite small in comparison to the contributions of noise associated with the other system
parameters. Therefore, a cone approximation to the hyperboloid y; is not unreasonable in
the majority of situations. Each sensor-TDOA combination may be associated with a single
parameter #; as given by Equation 2.5 which specifies the angle of the cone relative to the
sensor pair axis. For a given source and the i'* pair of sensors, the parameter §; will be

referred to as the i’ direction-of-arrival (DOA).
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Chapter 3

Localization Error Criteria

Given a set of N sensor-TDOA combinations and their respective loci of potential source
locations, y;, the problem remains as how to best estimate the true source location, s. Ide-
ally, s will be an element of the intersection of all the potential source loci (s € ﬂf\il Xi)-
(Note that depending on the number sensor pairs and the choice in their placement, this loci
intersection may consist of multiple elements, even under ideal circumstances.) In practice,
however, for more than two pairs of sensors this intersection is, in general, the empty set.
This disparity is due in part to imprecision in the knowledge of system parameters (TDOA
estimate and sensor location measurement errors) and in part to unrealistic modeling as-
sumptions (point source radiator, ideal medium, ideal sensor characteristics, etc.).

With no ideal solution available, we must resort to estimating the source location as the
point in R? which best fits the sensor-TDOA data or more specifically, minimizes an error
criterion that is a function of the given data and a hypothesized source location. Limiting
our scope to the Ly (sum-of-squares) norm, three non-linear least squares (LS) error crite-
ria appear applicable to this situation. The first is motivated from a Maximum-Likelihood

standpoint and the remaining two are heuristically derived from estimate-dependent dis-
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tance measures. As a preliminary to defining these criteria, the variance associated with a

DOA estimate is explored.

3.1 DOA Variance

The DOA associated with a pair of sensors, m;; and myy, and an estimated TDOA for a
source, 7;, is given by Equation 2.5. 7; is a single realization of a random variable 7; corre-
sponding to the true TDOA, T'({m;;, m;3}, s), corrupted by a random noise process, which
will be assumed to be additive and zero-mean. In the absence of any other information,
the true TDOA is approximated by 7; and the variance of the r.v., var{7;}, assumed to be
available as a byproduct from the delay estimation procedure, is generally a function of the
signal-to-noise ratio at the sensor pair.

An exact formulation of the statistics for 8; requires knowledge of the probability distri-
bution function of 7;. In practice, this is not available. However, if it is assumed that the
pdf of 7; is concentrated near its mean, the moments of §; may be approximated in terms
of the moments of 7; [56]. Specifically,

c? - var{T;}

|myy — 1fn2'1|2 . sin2(0i)

var{f;} ~

(3.1)

The variance of the DOA is therefore dependent upon the estimated DOA with the min-
imum occurring in the broadside source case (¢; = 7) and peaks for the endfire conditions
(; = 0,7). The above approximation is most appropriate for broadside angles and small
TDOA estimation variances. Intuitively, 8; is least sensitive to the precision of the TDOA

estimation procedure for source locations directly in front of the sensor pair.
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3.2 The Jrpos LS Error Criterion

The first LS criterion to be considered is a weighted error based upon difference between

the TDOA estimates and the ideal TDOA associated with the hypothesized source location,

N
Jrpoa(s) = Z €itdoa * [Ti — T({my1, m}, s))° (3.2)

where €;:4,4 is a weighting figure associated with the ith time delay estimate.

Equation 3.2 is motivated from a probabilistic standpoint. If the time-delay estimates
at each sensor pair, 7;, are assumed to be independently corrupted by zero-mean additive
white Gaussian noise with known variance, var{7;}, i.e 7; is a normally distributed random
variable given by:

Ti ~ N(T({milv miQ}v 5)7 var{’ﬁ})

The likelihood function associated with a set of TDOA estimates, 7,72,...,7n, and an

hypothesized source location is given by:

A —(ri = T({mi, mis}, 5))?
P(T1, T2y ..o, TN S) = Z:r[l Wexp( Dvar( T} )

and the corresponding log-likelihood function is:

N C— m;;, mjs},s))?
In(p(71,72,...,7N38)) = — (Zln(\/m)—l_ . T(Q{var{ﬁ} e )

The Maximum Likelihood (ML) location estimate, 8577, is the position which maximizes
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In(p(7y, 72, ..., 7N;8)) or equivalently minimizes:

N (ri = T({mi, mp}, 5))?

; var{7;}

=1

This expression is identical to the Jrpoa(s) LS error criterion in (3.2) with the weighting
figures, €;140q, replaced to the reciprocal of the TDOA estimate variances. For this reason,

the weights are set to

€itdoa = 1/’0(17“{7;} (33)

and therefore, in the case of time-delay estimates corrupted by additive white Gaussian

noise, the minimization of Jrpo4 yields the ML estimate. i.e.

$TpoA = 8p1 = argmin JTpoA(s) (3.4)

3.3 The Jpos LS Error Criterion

The second two LS criteria are based upon minimization of R® distance measures, rather
than the maximization of TDOA-related likelihood function. The first is a weighted error
utilizing the differences between the DOA estimates and the true DOA of an hypothesized
source location, s, relative to each sensor pair. The true DOA is denoted by ©({m;, m;},s)

and the least-squares error criteria is defined to be:

N N
Jpoal(s) = Zeidoa - (d6;)? = Zeidoa [6; — ©({m;;, m;p}, s)]? (3.5)
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Figure 3.1: Illustration of Jpp4 LS Error Criterion for two sensor-pair, TDOA-estimate
combinations.

where €;4,q is a weighting figure associated with the i"® DOA estimate. Figure 3.1 illustrates
the parameters involved in evaluating Jppa for two pairs of sensors. The dashed lines
represent the true DOA’s for a source at location s relative to each sensor pair while the
solid lines show the estimated DOA’s as determined by (2.5). In each case, the solid line
illustrates the intersection of a DOA cone and the plane formed by the hypothesized source
and sensor pair. The differences between the estimated and hypothesized angles are labeled
with d#f.

The weighting coefficients, €4, in (3.5), are selected to be the reciprocal of the respective

DOA estimate variances (3.1) and may be expressed as

|m;o — 1fn2'1|2 . sinz(Hi) B |m;o — 1fn2'1|2 T2

2 - var{T;} 2 var{T}  var Ti}

€idon = L/var{6;} = (3.6)

23



The source location estimate found via minimization of the Jpp4 error is given by
Spoa = argmin Jpo(s) (3.7)

Given TDOA estimates corrupted by additive white Gaussian noise, 8po4 does not
possess the Maximum-Likelihood property as does the estimator S7pop 4. However, the Jpoa
error criterion does have several properties that make it preferable in specific situations.
These stem from its use of a distance measure in R> and the emphasis provided via its
weighting coefficients. Specifically, the Jpo4 coefficients given by (3.6) place more value on
the sensor pairs with large sensor separation and/or small TDOA estimates (corresponding
to broadside sources). As (3.1) suggests, these DOA’s are proportionately less susceptible to
noise in the TDOA estimates from which they are derived. Favoring specific DOA’s based
upon sensor placement allows the Jppa error criteria to utilize knowledge of the array
geometry in addition to the delay-estimate information when evaluating the plausibility
of an hypothesized source point. The net effect is to provide the estimator with greater
robustness in unfavorable conditions. As will be shown in the analysis to follow, §poa
possesses a performance advantage in situations where the source is off-angle to the array

and the TDOA estimates are poor.

3.4 The .Jp LS Error Criterion

Finally, we may also consider an error criterion based upon the distance from the hypothe-

sized source to the individual loci of potential source locations:
N
Ip(s) = €a-[D(xi,s)]’ (3.8)
=1
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m;o m;y

Figure 3.2: llustration of Jp LS Error Criterion for two sensor-pair, TDOA-estimate com-
binations.

where D(x;, s) represents the minimum distance from s to the locus x;. In practice, D(x;, s)
will be calculated by the orthogonal distance from s to the appropriate cone approximation
to x;. The Jp LS Error criterion for two sensor-pairs is illustrated in Figure 3.2. Here again,
the solid lines represent the estimated DOA’s as determined from (2.5). The dotted lines
show D(x;,s) and D(y;,s), the orthogonal distances from the hypothesized source location
to the cone approximations of x; and Y;, respectively. Finally, the dashed lines depict the
ranges, I2; and R;, of the hypothesized source to the midpoint of the sensor pairs.

The orthogonal distance, D(x;, s) may be calculated from the existing parameters by:

D(xi,8) = R; -sin(0; — O({m;1, m;2},s)) (3.9)

The weighting coefficients, ¢4, will be calculated using (3.6) in the same fashion as those
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for the Jpoa, and the Jp-based source location estimate is defined to be

Sp = argmin Jp(s) (3.10)

The Jpo 4 and Jp error criteria are similar in that they both evaluate a distance measure
in R3. However, the Jp criterion, by virtue of the R; term in (3.9), has a strong tendency
to bias the Jp-based estimator sp to the benefit of hypothesized source locations with small
ranges. The effect is to dramatically pull the estimate towards the sensor array. The Jpoa
error criteria possesses no such dependency on source range and does not exhibit this trend
in practice.

A practical consideration that must be addressed is the computational procedure re-
quired for the evaluation of these three estimators. Since each of the error criteria that
has been presented is a nonlinear function of s, the solutions of (3.4), (3.7), and (3.10)
require some form of a numerical search (see Chapter 6 for details); search methods have
the potential to be computationally burdensome and problematic due to local minima in

the error space.

3.5 An Analysis of the Least-Squares Error Criteria

The properties of these three error criteria were evaluated through a series of Monte Carlo
simulations. In each case, a ten-element, bi-linear sensor array as depicted in Figure 3.3 was
employed. Sensor spacings were set at 0.5m and the eight pairings of diagonally adjacent
sensors (i.e. sensors 1 and 4, 2 and 3, 3 and 6, 4 and 5, etc.) were selected as the sensor pairs
used for TDOA calculations. This choice of array geometry and sensor pairings is somewhat

arbitrary. The use of a bi-linear array in this case was motivated from its potential use as
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Figure 3.3: lllustration of the experimental set-up used to evaluate the LS location estima-
tors: A 10-sensor planar array with 0.5m spacings and four sources at 90°, 45°, 30°, and
15° with a common range of 4m.

part of a portable teleconferencing unit. The array may be easily deployed at the site and
offers reasonable coverage of a typical conference-room table. In general, the design of
array geometry for the purposes of source localization and/or sound capture is dependent
upon the room environment. The results to be presented here would presumably scale
appropriately for different array dimensions and configurations.

The first simulation compared the three LS error-based location estimators using four
sources with a common range of 4m and varying bearing angles (90°, 45°, 30°, and 15°)
relative to the array center. Figure 3.3 shows this experimental-setup. The true TDOA
values for each sensor pair were calculated and then corrupted by additive white Gaussian
noise of various power levels. For those instances where the corrupted TDOA value exceeded
the maximum time-delay possible for a given sensor pair separation distance (i.e. when
|- 7| > |myz — m;;|), the TDOA value in question was set equal to the maximum possible

TDOA for that sensor pair.
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For each set of corrupted TDOA figures, three location estimates were computed via
minimization of the appropriate error criterion. The estimates in (3.4), (3.7), and (3.10)
were computed via a search method! with the initial guess set equal to the true location.
Clearly this is not a practical algorithm since it requires prior knowledge of the actual
source location, but for the purposes of comparing the statistical properties of these three
estimators it is a computationally reasonable alternative to a more comprehensive search.
100 trials were performed at each of 11 noise levels ranging from a standard deviation the
equivalent of 107™®m to 10™'m when scaled by the propagation speed of sound in air (¢ &
3428). The sample means and standard deviations were calculated from the source location
DOA and range estimates generated by the three error criteria at each noise condition.

For each estimator, at a constant noise level, the location-estimation accuracy was great-
est for the 90° broadside source and progressively declined as the source was moved further
toward the endfire condition. All of the estimators exhibited some degree of bias. This
bias generally grew as the variance of the additive noise was increased and as the source
was moved away from the broadside location. This situation was most extreme for the
Jp-based estimator which displayed significantly greater bias in both range and DOA es-
timation when compared to its Jrpoa and Jpoa-based counterparts. The reason behind
this behavior was alluded to in the previous section and was attributed to the range term
in (3.9).

Given this estimator bias, it is more appropriate to consider the root-mean-square er-
ror (RMSE) of each estimator rather than the estimators’ variance or bias alone. The RMSE
is defined by:

RMSE[#] = \/E[(i — )2

!Chapter 6 addresses a number of issues relating to the specific application of nonlinear optimization
procedures for the evaluation of these location estimates.
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Figure 3.4: Source DOA Estimate RMSE for sources at 90°, 45°, 30°, and 15° relative
to the array and common range of 4m. For each plot the x-axis represents the standard
deviation of the white Gaussian noise added to the true TDOA’s scaled by ¢. and the y-axis

represents the RMSE of the DOA estimate.

where 7 is the estimate of the true value x. In practice, the expectation operator is replaced

by the ensemble average. The RMSE can be shown to be equivalent to:

RMSE[#] = y/bias{2}? + var{2}

and thus the RMSE incorporates the tradeoff between bias and various into a single statistic.

Figure 3.4 displays the RMSE results of these Monte Carlo simulations for the source

DOA estimates produced by each of the three error criteria. The four graphs correspond

to the distinct source locations and in each case the horizontal axis plots the standard
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deviation of the added white Gaussian noise scaled by the propagation speed of sound in
air. For the broadside source at 90° there is very little to distinguish the performance of
these three estimators in the low to moderate noise conditions. However, at the two most
extreme noise levels the Jp-based estimator exhibits a marked increase in RMSE value.
This distinct ’knee’ in the Jp performance line is apparent at all four positions and occurs
at progressively smaller noise levels as the source’s angle of arrival is decreased. In general,
the Jp estimate is by a considerable degree the least robust of the three to the additive noise
and DOA conditions. The Jrpoa and Jpp 4 estimators display a specific trend as well. At
low noise levels, the Jrpo 4-based estimate, which is the ML estimate in this case, possesses
a distinct performance advantage over the Jpp 4 estimate. However, with the higher noise
levels this situation is reversed and the Jpp4 is superior. The performance crossover point
occurs at lower noise levels the more endfire the source is positioned.

The preceeding results presented the RMSE values of the source DOA estimates. A
similar analysis with the range estimates, does not reveal as distinct differences between
the respective estimators. While the Jp estimate possesses an extreme bias towards the
array origin, this is countered by a small range variance. Conversely, the remaining two
maintain little bias, but do have a significantly greater range estimate variance. The net
effect is to produce roughly equivalent range RMSE values for all three estimators.

Based upon these results a second simulation was performed, this time fixing the source
DOA and noise level to 15° and .01m, respectively, and allowing the source range to vary
from 2 to 10m. The DOA estimate RMSE results are displayed in Figure 3.5. At a roughly
constant 2° RMSE, the Jppa-based estimator offers consistently better performance than
its counterparts. The Jrppa-based estimator does slightly worse, particularly at close

range, while the Jp-based estimator quickly climbs to a peak RMSE value of 14° for this
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Figure 3.5: Source DOA Estimate RMSE for sources at 15° relative to the array and ranges
varying from 2 to 10m. Standard deviation of TDOA estimate noise scaled by c is fixed at
.01m for each trial. The x-axis represents the source range and y-axis represents the RMSE
of the DOA estimate.

15° source. The Jp error appears to be quite sensitive to the true source range, the Jrpoa
less so in this respect, and the Jppa error very little at all. The independence of source
DOA estimate precision from the source range is a desirable estimator property, particularly
in applications where only the source’s bearing is of interest (pointing some cameras, for
instance).

To summarize the results of these simulations: For broadside sources and clean TDOA
estimates, the location estimate S7pp4, which is based entirely on a least-squares error
criterion employing the time-delay estimates alone, proved advantageous. However, under
less favorable noise conditions and with sources located off-angle to the sensor array, the
DOA-based location estimator, Spp 4, appears to offer preferable performance. None of the
data available advocated the use of the distance-based estimator, $p, and it will not be

considered further.
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Chapter 4

Detection of Sources

The source-sensor-TDOA model which has been employed for the source localization prob-
lem may also be incorporated with statistical hypothesis-testing procedures to produce
a means for detecting the presence of a signal source. Given TDOA estimates which
are assumed to be samples from mutually uncorrelated, Gaussian random variables, the
TDOA-based LS error criterion, Jrpopa, is shown to be the basis for a probabilistically
optimal detection process. The specifications of the decision rules are dependent upon the
source/non-source model adopted, three of which will be considered here. The first scenario
includes specific models for the TDOA estimates under both the source and non-source
conditions. The resulting detection rule corresponds to a binary hypothesis test. In the sec-
ond scenario, no assumptions are made with regard to the nature of the TDOA estimates
during periods when no signal source is present. Instead of attributing the observations
to a particular hypothesis, the consistency of the source model and the data is evaluated.
For the final scenario, no statistical modeling assumptions are adopted and an empirical

detection test is presented.
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4.1 Source/Non-Source Modeling

The purpose of this chapter is to provide a method of identifying when a signal source is
present in the radiation field of the sensors. When appropriate statistical models are avail-
able, this is accomplished using a source/non-source decision process. In this context the
term “source” will refer to a single, radiating source which has presumably been effectively
located via one of the estimation procedures developed in the preceding chapter. The label
“non-source” will be applied to any location estimate for which the “source” condition is
not satisfied, most notably incorrect location estimates or those estimates produced during
periods of no source activity. The development of a practical source/non-source model re-
quires knowledge of the system application environment and the performance specifications
of the delay estimator responsible for generating the TDOA estimates and variance figures.

With regard to environment, issues that must be addressed are the number of potential
sources and the nature of the background signal during non-source periods. In the simplest
case, the source/non-source model may be be reduced to well-defined single-source and
silence hypotheses. With more complex situations, the non-source condition may include
instances of radically errant location estimates, multiple-simultaneous signal sources, and
silence periods with incomplete or unknown statistics.

The source localization and detection procedures depend principally upon the TDOA
information. In many instances, the time-varying nature of the source necessitates the use of
a delay estimator responsive to short-term signal characteristics. For a delay estimate to be
accurate and meaningful, the analysis window associated with a single delay estimate must
be small enough to assure that the signal is statistically stationary throughout the analysis
time interval. The appropriate time-interval limit is dependent upon the nature of the signal

source. In the case of speech, this time frame is on the order of 20ms to 30ms. An additional
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factor is that frames of speech will be interspersed with periods of silence. Ideally, the delay
estimator will be capable of producing independent estimates on a frame-by-frame basis.
For those frames containing speech, the TDOA value is a reflection of the source DOA and
the variance is a function of the signal content and the SNR conditions. During periods of
silence, the TDOA statistics are not clearly defined. Presumably, in the absence of a source,
the background noise at the sensors is uncorrelated and the resulting TDOA estimates will
possess a zero mean. If the estimate variance is calculated on a short-term basis as well, the
variance figure reported with the TDOA estimate will correspond to the silence condition.
However, if the variance value is evaluated over several analysis frames, some of which may
include periods of source activity, the variance term is not appropriate for modeling the
silence regions.

Two source/non-source models will be addressed here. The first assumes that a very
simple scenario is appropriate for the application. Only one signal source is operating at
a time and the delay estimator is capable of reporting accurate variance figures during
both source and non-source periods. This model, referred to as the “binary source/silence
model”, is investigated in scenario #1. The second model is more general, assuming that
TDOA statistics are valid only during “source” periods. The “non-source” condition is left
unspecified. The subject of scenario #2, this situation is termed the “source-only model”.
Scenario #3 involves an alternative, non-statistical approach. In the absence of any clear
statistical models, the physical clustering of the estimated DOA bearings relative to the

estimated source is adopted as a detection measure.
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4.2 Scenario # 1: Binary Source/Silence Model

4.2.1 Binary Hypothesis Testing

For a set of observational data and a number of probabilistic models which may have
produced the data, statistical hypothesis testing provides a systematic means for identifying
the appropriate model and quantifying the confidence of this choice [57]. In the event that

only two specific, statistically well-defined hypotheses are considered:

(Hp) “non-source”

(Hy) “source”

the hypothesis selection may be accomplished using a binary hypothesis test. In the absence
of any prior detection probabilities or costs associated with misclassified decisions, the
decision rule will be derived from the Neyman-Pearson criterion. The objective behind
this approach is to select an appropriate false-alarm probability (Pg) and then determine
a decision strategy that obtains this value while simultaneously maximizing the probability
of detection (Pp). In this context, Pp associated with a decision rule is defined as the
probability that the source is identified as present when it is not (H;p selected when Hy
is true), and Pp is the corresponding probability that the source is identified as present
when it is (H; selected when Hj is true). A decision rule which satisfies these restrictions is
referred to as the “most powerful test” of the hypothesis Hy with respect to the alternative
Hy. Let po(y) and p1(y) be the joint probability density functions for an observation set y
under hypotheses Hy and Hjy, respectively. The likelihood-ratio, A(y), appropriate for this

binary decision is defined by:
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A theorem attributed to Neyman and Pearson [58] shows that the most powerful test with

the false-alarm constraint (Pp = «) is found from the likelihood-ratio test:

Aly) > A accept Hy

Aly) < A accept  Hy

where Pr(A(y) > A | Hy) :/ Py(A)dA =
A

Py(A) is the probability density function of the random variable A(y) under hypothesis Hy.

The maximum probability of detection obtained by this optimal test is:
Pp = Pr(A(y) > A | 1) :/ PL(A)dA
A

where P;(A) is the probability density function of A(y) under Hj.

The above test is frequently expressed in terms of a monotonic function G = G(A) of
the likelihood ratio. Assuming, without loss of generality, this function to be increasing,
the likelihood test is rewritten as:

G(A) > Gy accept Hy

if
G(A) < Gy accept  Hy

where  Pr(G(A) > Go | Ho) = / Po(G)dG = a

Go
and the corresponding Pp is found from:

Pp = Pr(G(A) > Go | Hy) = /GOO PG
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Here Fy(G) and P;(G) are the pdf’s of G(A) under each of the respective hypotheses.

4.2.2 Binary Source Detection Test

The source/silence model assumes that for the set of N sensor-pairs, the TDOA estimates
(11,72, ...,7n) and their associated variances (var{Ti},var{Tz},...,var{Ty}) are avail-
able, and that the source location estimate, §, has been evaluated. With regard to the
earlier discussion, the TDOA estimates are further assumed to be observations from inde-

pendent, Gaussian processes with the hypothesis-dependent parameters:

(Hp): “silence” T; ~ N(0,var{T;})

(Hy): “source” T; ~N(T({mj1, m;2},8), var{7T;})

In each case the reported variance figure is assumed to be consistent with either the “source

or “silence” conditions. The hypotheses are distinguished only by their differing mean

values.

The likelihood-ratio for these binary hypotheses is given by:

N .
1 —(ri=T({m;1,m3},8))?
P71, T2y, TN) 2131 \/2mvar{T;}y P ( 2vari7} )
A(T1, 72, ..., TN) = = ~
polmr 72,1 7) Y
Ly Vamvar(rg P\ Zoar(T)

N Ti— m;i,m;s },8))>
o (gt

N 2
1;[ exp (21}(17“%%})

Defining the function G(A) = —21In(A), the expression is reduced to the sufficient statistic:

N N 2
Z { il 22} )) Z P

G117, T var{T;} - var{7;}

=1
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N
72

= Jrpoa(d) =3 Wim (4.1)

=1

and the optimal likelihood test becomes:

G(m,72,...,7n) < Gy accept Hj

G(ti,72,...,78) > Go accept Hy

Go
where  Pr(G(A) < Go | Ho) = /_ Po(G)dG = a (4.2)

Note that the inequalities have been reversed as a result using a monotonically decreasing
transformation function G'(A). The probability of detection given the false-alarm constraint
is:

Go

Pp = Pr(G(A) < Gy | Hy) = / P(G)dG (4.3)

— 00

In order to determine the test threshold, Gy, and the resulting detection probability,

the pdf of the test statistic G(71, 72, ..., 7n) must be obtained. Simplifying (4.1) yields:

N . a2 9 . R
G(Th T2y v vy TN) = Z T({m217 mz2}7 S) UGT{Q;}T({mﬂv m22}7 S)

=1

The statistic is a linear combination of Gaussian variables and therefore a Gaussian variable

itself under each of the hypotheses. Specifically,

+m 52
(HO) “silence” G ~ N(i\f: T({mﬂ? mi2}7 é)z 4§: T({milv mi?}v é)z )
P var{7;} o var{T;}
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. , T({mi;, mp},8)?% L T({miy, myy}, 8)2
(Hy): “source GNN(—; var (7] ,4; var (7] ) (4.4)

—m 82

Evaluating (4.2) and (4.3) requires the calculation of the area under a Gaussian probability
density function. While no closed-form solution to this problem exists, values of the cu-
mulative unit normal distribution function are available via numerical integration methods.

This function is defined by:

2= [ e )a
z) = — exp | — | dx
27 J—co P 2
and ®(z) may be interpreted as the probability that a unit-mean, unit variance Gaussian
variable is less than z. In terms of this notation, solving (4.2) for the detection threshold

yields:

Go
Py = / I X e

= @ (o7 () + V) (4.5)

Figure 4.1 illustrates the relationship between the G statistic’s probability distributions

under each of the hypotheses and the calculation of the detection and false-alarm probabili-
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Po(G)

+m G

~<— Accept Hq I Accept Hp ————— =

Figure 4.1: Binary Hypothesis Test: The probability distribution functions for the statistic
G under each hypothesis are illustrated. The detection (Pp) and false-alarm (Pr) proba-
bilities are indicated by the shaded regions under each curve and to the left of the decision

threshold (Go).

ties. Pp and Pp areindicated by the area under the curves of Py (G) and Fy(G), respectively,
for values of G less than the decision threshold Gg. Note that both probabilities exhibit
monotonic growth(decay) as G is increased (decreased).

The false-alarm and detection probabilities are functions of the mean (m) and variance
(s%) of the statistic ¢ as defined in (4.4). These figures are directly related to the source
location estimate and the TDOA variances. As (4.5) indicates, for a fixed false-alarm rate,
the probability of detection improves as m increases. In general, this implies that a signal
source at a location possessing small TDOA values with respect to the sensor pairs is more
difficult to distinguish from silence than the same source found at a location with larger

TDOA values. For a linear array, this means that end-fire sources have more favorable
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Figure 4.2: Binary Hypothesis Test: Plots of Probability of Detection versus Probability of
False-Alarm for two sets of TDOA estimate variances. The four source locations are each
at a range of 10m from the 10-element bilinear array with bearing angles varying from 90°

(broadside) to 75°.

detection statistics than broadside ones.

To exhibit this phenomena, the ten-element bi-linear depicted in Figure 3.3 and used
for the experiments in Section 3.5 was reemployed for simulations involving four different
source locations. The sources were placed at a range of 10m relative to the midpoint of
the array and at the same height as the array mid-line. The location bearing angles were
begun at broadside (90°) and varied in 5° decrements. Sensor-pair selection was done the
same as Section 3.5. Figure 4.2 plots the receiver operating characteristic (ROC), Pp versus

Pr, for each location and two sets of TDOA estimate variance levels. The source at 90°
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Figure 4.3: Binary Hypothesis Test: Plots of Probability of Detection versus standard
deviation of TDOA estimates scaled by ¢ (in meters) for three false-alarm probabilities:
Pr=.001, .01, and .1. The four source locations are each at a range of 10m from the
10-element bilinear array with varying angles.

presents the worst-case location at this range. In this situation there is a relatively low
detection probability associated with each Pr value at these variance levels. As the source
is moved from broadside, the Pp values quickly grow until the ROC curve is nearly pinned
at Pp ~ 1.0 for the 75° location. Note that the source range (10m) and TDOA estimate
variances are quite large in comparison to those used in Section 3.5. These conditions were
selected in an effort to highlight the location dependence inherent in this binary hypothesis
test. With more moderate variance levels and a smaller range, the ROC curves would
all appear nearly flat at Pp ~ 1.0 (including the worst-case broadside source) and thus

unenlightening.
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The properties of this binary hypothesis test were further analyzed through a second
set of simulations. This time the probability of detection for the four source locations was
evaluated as a function of the TDOA estimate variance while the false-alarm rate was held
constant. Figure 4.3 displays the plots of Pp versus the TDOA variance for Pp values
of .001, .01, and .1. Each of these curves is flat at Pp =~ 1.0 for small TDOA variances
and possesses a distinct knee as the variance is increased. The robustness of the test
improves as the source is moved from broadside, but even with the worst-case source at this
relatively large range, the detector performance does not degrade until the TDOA variance
has increased to over 10~2m.

Given a situation in which the source/silence model assumed for this scenario is appro-
priate, the binary hypothesis test presented provides an effective means for assessing the
validity of a source location estimate. Further, the significance of this detection decision
may be evaluated from the sensor geometry and the location estimate information. For

most practical applications, this confidence level is quite high.

4.3 Scenario # 2: Source-Only Model

4.3.1 Model Consistency Testing

In the previous scenario, the “silence” hypothesis modeled the non-source frames as periods
of no source activity with known statistics. As discussed earlier, the delay estimate variance
figures may not be valid for the silence frames and the binary hypothesis test presented there
would be non-applicable. Furthermore, with many situations, the source-silence dichotomy
is inappropriate. An uncorrelated, zero-mean background noise may not be the only al-

ternative to a single source. Consider the case of several simultaneous sources. A delay
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estimator which does not distinguish this situation will tend to produce a single TDOA
estimate that is a weighted mixture of the individual delay figures. The TDOA estimates
in this case would not correspond to either of the hypotheses of the previous scenario’.
For these reasons, it is desirable to have a hypothesis test which attempts to validate the
consistency of the “source” hypothesis given the TDOA information without pronouncing
a more favorable description. This is the goal of model consistency testing.

Given a set of observational data, y, and a statistical model believed to be responsible

for generating this data, two hypotheses are defined:

(Hp) “observations are not consistent with model”

(Hy) “observations are consistent with model”

With hypotheses specified in this manner, identifying the “most powerful test” of Hy
with respect to Hg is not possible. In the absence of any knowledge of the alternative
hypotheses, the approach taken is to select the smallest acceptance region satisfying a fixed
probability of detection constraint, Pp = . The acceptance region represents the set of
observations y that is maximally consistent with the Hy hypothesis subject to the Pp =
restriction while attempting to minimize the false-alarm probability associated with the
unknown alternatives. Denoting the acceptance region by Ri, the decision rule may be

expressed as:

vy € Ry accept Hy

y €Rq accept Hy

'The localization of multiple-sources will be addressed in Chapter 9 in the context of competing speech
sources.
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where Ry is found from the solution of the constrained minimization problem:

min dy subject to Pr(y e Ry | Hy) = / p(y)dy =3 (4.6)
721 Rl 721

4.3.2 Source Consistency Test

The “source-only model” may be expressed as:

(Hp): “source not valid” 7; o0 N(T({m;1, ms}, 8), var{T;})

(Hy): “source valid” Ti ~ N(T({m;1, mys}, 8), var{T;})

In the event of a single source, with estimated location 8, the TDOA estimates are again
assumed to be observations from uncorrelated, Gaussian random variables with known mean
and variance. However, no assumptions are made concerning the nature of the alternative
hypothesis.

Instead of investigating the observation space consisting of the TDOA estimates them-
selves, it is advantageous to consider the one-dimensional statistic F' = F(m, 72,...,7n)
based upon the Jrpo4 error criterion:

o (i — T({miy, mio}, 8))?

F(Tl,rg,...,TN):Z oar (T = Jrpoa(8)

=1

Under the Hy hypothesis, I is a random variable possessing a chi-squared distribution with
N-degrees of freedom (F ~ x3%;). Since the chi-squared pdf is unimodal, the acceptance
region R will be the closed interval [a,b] and the constrained minimization problem may

be solved analytically. Applying Lagrange multipliers to (4.6) indicates that the probability
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density function values associated with the optimal acceptance region must satisfy [59]:

where pﬁv(x) is the pdf associated with the x% distribution given by:

1
(N=2)/2 _—x/2
") = SaEr N ) ‘

Finding the acceptance region endpoints then requires searching Pyz, for equal values and

expanding/contracting the endpoints until the required probability, Pp = § is contained

within the interval. Defining the cumulative N-degree of freedom chi-square distribution

function as:

the final decision rule may be written as:

F<a oo F>b “source not valid”

a< F<b “source valid”

with @ and b calculated from:

P2 (@) = pX?v(b) such that VU(b;N)-V(a;N)=pj

(4.7)

With no alternative hypotheses assumptions, an analysis of the test’s operating char-

acteristics is less straightforward than in the previous scenario. To illustrate some of the

consistency test properties, four potential signal situations were created and simulated using

the 10-element bilinear array with its eight sensor-pairs. Case A corresponds to the “source
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Figure 4.4: Hypothesis consistency test for four signal situations with a source estimated to
be broadside to the 10-element bilinear array and at a range of 10m. Each plot presents the
statistic F' for a 1000 trials under each signal condition. The acceptance region [1.2,15.7]
(shown as a horizontal region in each plot) was calculated from (4.7) with a detection
constraint of 5 = .95. “Valid Source Frames” refers to the percentage of trials falling
into the acceptance region. The signal situations represent: (Case A) single active source,
(Case B) two active sources, (Case C) no source and correct variance figures, and (Case D)
no source and underestimated variance figures.

valid” hypothesis, while Cases B-D represent various signal circumstances inconsistent with
the valid source model. For each case, the estimated signal location, §, was assumed to be
broadside to the sensor array at a range of 10m. This is identical to the 90° source in the

scenario #1 simulations. The signal situations are described below:

Case A: Valid source. True TDOA values are corrupted by samples of uncorrelated
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Gaussian noise with a known standard deviation .01m.

Case B: Two simultaneous active sources. The sources are assumed to be symmetri-
cally situated 2.8m about the the broadside location such that the corresponding
TDOA estimates reflect equally the contributions of each true TDOA set and the
source location is estimated to be 8. TDOA values are corrupted by samples of
uncorrelated Gaussian noise with a known standard deviation .01m. This is an
instance of multiple sources producing TDOA estimates that are not representa-
tive of a single source location. The non-valid location estimate found through
minimization of the error criteria is a reflection of the true source locations, in

this case, their midpoint.

Case C: No source present and correct TDOA variance figures. TDOA values are
set to zero and uncorrelated Gaussian noise with a known standard deviation
.0lm is then added. This corresponds to the “source absent” hypothesis in the

binary hypothesis test of scenario #1.

Case D: No source present and underestimated TDOA variance figures. TDOA val-
ues are again set to zero and uncorrelated Gaussian noise with a standard devi-
ation .02m is then added. However, the reported TDOA variance is .01m. This
corresponds to the case of a delay estimator that does not accurately model the
variance term during silence intervals and for which the binary hypothesis test

is inappropriate.

Note that for each of the above situations, the reported variance figures and the source
location estimate are identical. Under the “source valid” hypothesis, the statistic I would

be distributed as F ~ x2% in each case and therefore the acceptance regions will be identical.
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Selecting a detection probability constraint of g = .95, the acceptance interval calculated
from (4.7) is found to be [a, b] = [1.2, 15.7].

The simulations consisted of 1000 trials with each signal situation. The results are shown
in Figure 4.4. In each of these graphs, the statistic F' value for a given trial is denoted by a
dot at the appropriate height. The boundaries of the acceptance region are represented by
the two horizontal lines in the lower portion of each plot. The percentage figures listed in
the figure titles refer to the fraction of trials falling within the acceptance region. For the
Case A simulation, the valid source frame value of 95% is consistent with the Pp constraint
of B = .95. Cases B-D demonstrate the ability of the consistency test to reject non-valid
source scenarios. For the two source situation presented the false-alarm rate is less than
1% and with the silence conditions, the distinction between models is large enough that
no misclassifications are made. The results of Case C may be compared to those of the
binary hypothesis test of scenario #1. Referring back to the 90° source in Figure 4.3, the
graph indicates that with these conditions (Pp = .95 and TDOA noise = 1072m) the false-
alarm rate associated with the binary decision rule is negligible (Pr < .001). While the
consistency test presented here is generally more conservative due to its lack of alternate
hypothesis assumptions, the results of the Case C simulation certainly agree with those
predicted for the binary decision test. In this instance, little in the way of performance has
been sacrificed by substituting the more general consistency test for the binary hypothesis

test.

4.4 Scenario # 3: No Statistical Model

In scenario #1, simple statistical models were assumed to be available for both the source

and non-source conditions. Scenario #2 involves the limitation of this knowledge to the
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characterization of the TDOA estimates only during valid source periods. In this final
scenario, no clear statistical models are assumed to be applicable to either the source or
non-source hypotheses. The resulting detection rule is based entirely upon empirical crite-
ria rather than a probabilistic derivation, and as such, a performance analysis is difficult
to quantify independent of the particular application. This empirical test is appropriate
for those cases in which the “source-only model” is unrealistic. These situations include
instances in which the TDOA estimates are found to deviate significantly from a Gaussian
distribution or their reported variance figures are inaccurate on an absolute scale?.

Given a source location estimate, §, the empirical detection measure, F, is defined as
the average of the absolute value of the differences between the estimated DOA, 6;, and the

true DOA associated with the location s relative to each sensor pair, i.e.

1 & .
E= ﬁ;wi—@({mﬂ,mﬂ},sﬂ (4.8)

The physical significance of this detection measure is illustrated in Figure 4.5 for the case
of 3 sensor pairs. In the interest of clarity, the DOA cones are shown as bearing lines which
represent the intersection the respective cone with the plane formed by the estimated source
location and the appropriate sensor-pair axis. The solid lines indicate estimated bearing
lines for each sensor pair while the dashed lines denote the DOA bearings for the location
estimate. The expression in (4.8) is a reflection of the degree that the estimated bearings

are clustered about §. A tight clustering produces a small value for F and is indicative of

2Tt is important to distinguish the absolute and relative precision of the variance figures associated with
the TDOA estimates. A misrepresentation of these values on an absolute scale prevents the use of the
statistical models incorporated into the hypothesis-testing procedures of scenarios #1 and #2, but may not
be detrimental to the location estimation itself. The LS-error criteria presented are dependent upon the
ratio of these variance values relative to one another. An error in the scale of these terms will not effect the
minimization process. In practice, knowledge of the relative TDOA variance may be simpler to obtain than
an estimation of the absolute variance figures.
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Figure 4.5: Empirical Detection Test: Illustration of the physical significance associated
with the detection measure F for the case of 3 sensor pairs.

a valid source location estimate. Excessive values are typical for an inaccurate estimate or
a situation where a single source is not present. In practice, a detection threshold of 1° to
2° provides an effective means of identifying valid source locations.

A detection statistic which incorporates average bearing angle deviation is preferable to
tests based upon TDOA disparity or overall distance. With regard to physical significance,
a bearing angle measure is advantageous to a TDOA approach. Because of the nonlinear
mapping from spatial bearings to TDOA values, displacements stated in terms of time-delay
figures will have varying physical interpretations depending upon source bearing. A mean
distance measure is unfavorable due to its bias towards locations close to the sensors. This
was the shortcoming of the Jp error criterion presented in the previous chapter. Remote

sources, in general, possess a greater total distance from the DOA cones thereby making
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it difficult to devise a detection threshold that is independent of source range. The use of
a detection measure based upon direction of arrival alone avoids both these difficulties. It
is invariant to both source bearing and range as well as possessing a physical significance

suitable for a source/non-source selection.

4.5 Discussion

Three distinct source detection tests have been detailed in this chapter. Their use is depen-
dent upon the environmental and system constraints imposed by the practical application.
The first, the binary source detection test, was designed with a very specific circumstance
in mind, namely those instances where the “source/silence model” is valid. When this is
the case, the test is statistically optimal. The second, the source consistency test, was
derived assuming a general source/non-source model. It is applicable to a wider range
of situations, but may not represent the most powerful test available when specific sta-
tistical models are known. The empirical detection test presents the extreme end of the
utilization-performance spectrum. While being universally applicable, it does not offer any
guarantee of optimality or performance predictability. In general, the selection of a par-
ticular detection test is a function of the information available. When specific knowledge
of the source/non-source statistics is known, it may be possible to generate a test which
fully exploits this understanding, as was done in scenario #1. For those cases where the
hypotheses are inadequately defined or unspecified altogether, the general detection test of

scenario #2 and the empirical test of scenario #3 are appropriate.
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Chapter 5

Estimation of Localization Error

Region

Given the location estimate of a source, an assessment of the spatial region of uncertainty
related to the estimate is essential before the information can be judiciously employed in a
practical application. The geometric framework developed here lends itself to a straightfor-

ward analysis of the spatial covariance associated with the location estimators.

5.1 Displacement Geometry

Let s be the 3-dimensional location estimate of a source with true location t. For a pair
of sensors, m;; and m;y, with midpoint m; and unit axis a; as shown in Figure 5.1, R; is
defined as the distance from t to m; and ¥; = O({m;;, m;3},t) as the angle between the
directed line segment t — m; and the sensor pair axis a;. The values ]%Z and éZ are defined

similarly for the location estimate §. The 3-dimensional Cartesian displacement vector from
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Figure 5.1: The relationship between the true source location t and an estimate of the
location § relative to the it sensor pair.

t to s is denoted by:

As = As,

In what follows, it is assumed that the true source location is known and the goal is to
develop a statistical analysis of the precision associated with the source estimate s.

g, is related to the positional vectors via the dot product:

Ricost; = (t+As—m;) -a
= (t—-m;) &+ As-a;

= R;costp; + As -a@; (5.1)

Following [43], R; is approximated by its first-order Taylor series expansion about the
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true source location:

~ t— s
RizRiﬁ—( Rfm ) - As (5.2)

This linearization of the source range value requires the assumption that source location
estimate be sufficiently close to the true location such that the error induced in this ap-
proximation is negligible in comparison to localization errors associated with the TDOA

estimate errors. As will be shown, this assumption is quite reasonable in practice.

Substituting (5.2) into (5.1) yields:

Ricoséi—l— (t _Rmz) .Ascoséi = R;cosy; + As - &

or equivalently:

cosf; — cos; = l— —(t— mi)%] - As (5.3)

By making the assumption that C(;;;/’i R~ %ﬁ" and applying (2.5) to the cosine terms on the

7

2

left side of the equation, arriving at:

(#) [T ({my1, mi2}, 8) — T({my1, mpz}, t)]
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And finally:

c

[T({m;1, m;3},8) — T({m;, mp}, t)] = (M) [E - mi)%] As

= hl. As (5.4)

where h! is the (1 x 3) vector relating the difference in TDOA for the i** sensor pair to the

estimate displacement vector.
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It will be useful to express (5.4) for the N sensor pairs via matrix notation. The (N x 1)
vector of TDOA differences is denoted by A7y and the (N X 3) matrix composed of the

hZ»T vectors will be given by H | i.e.

[T({myy, my2},8) — T({myy, mys}, t)] hi
[T'({m21, ma2}, 8) — T'({mg1, maa}, t)] h?
ATy = H =
| [ (myimya) . 8) - T(mygmya) . 6] L

The estimate displacement is then related to the N delay-estimate, sensor-pair combinations
by

A1y = HAs (5.5)

5.2 Source Estimate Based Upon Jrpos

The case where the position estimate in question was derived from minimization of Jrpoa
LS error criterion and correspondingly § = S7po4 as given by (3.4) is now examined.

The LS error (3.2) may be rewritten as:

2
Jrpoa(s) = itdoa * {Ti — T({m;1, m;s}, S)}

itdoa * {Ti — T({m;;,mp},t) +

N
>
N
;e
T({ma, miz},t) - T({mi1, mip),s)|

(5.6)

Defining W4, as the (N x N) diagonal matrix of weighting coefficients €;14,, given by
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(3.3) and AT, to be the (IV x 1) vector of differences between the estimated TDOA and

true TDOA,
m — T ({myy, myy}, t) €1tdoa
Ty — T'({myy, myy}, t) €2tdoa
ATTL‘ = Wtdoa =
™~ — T({mn, mpy2},t) €Ntdoa

Equation (5.6) is rewritten as:
JTDOA(S) = (ATTL‘ - ATst)TWtdoa(ATTt - ATst)
The LS criterion is assumed to be minimized when s = §, which gives:

Jrpoa(8) = min Jrpoa(s) = (ATr — A7) Wigoa (AT — ATy)

= (ATTL‘ - HAStdoa)TWtdoa(ATTt - HAStdoa) (57)

The right side of this equation is identical in form to the weighted linear least squares

error and can be shown [60] to be minimized when:
AStdoa = (HTWtdoaH)_lHTWtdoaATTt (58)

Therefore, minimization of Jrpoa4 would result in a Asyy,, as given above. Equation
(5.8) relates the displacement vector associated with a location estimate § to the TDOA
estimates that would produce this particular estimate via minimization of the nonlinear LS

error criterion Jrpoa4.
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The covariance of Asyy,, is given by:
COU{AStdoa} =F {(Astdoa - E(Astdoa))(Astdoa - E(Astdoa))T}

The delay estimates have been assumed to be corrupted by a zero-mean, uncorrelated noise

source and therefore F(A7,;) = 0. Substituting this and (5.8) into the above yields:

cov{Asyjos} = E{AstdoaAstdoaT}
T
= ("W igoo ) T H W00 E(AT AT )W, H (HT W00, H) )

= (H'Wi0o H) " HTW 1, E(AT AT D)W i THHTW 1, H)

The term F (ATTtATﬂLT) is equivalent to cov{Art,;} which is an (N x N) diagonal
matrix with entries var{r;}. Similarly, the weighting coefficients that comprise the diagonal
elements of W 4,, were selected to be (1/var{r;}), and thus, E(ATTtATﬂLT)WtdoaT =In.

The expression therefore simplifies to:

cov{Asigont = (HI'Wi0o H)"HHTW 13, H) (HTW 1, H) 7!

= (H Wy, H)™ (5.9)

Equation (5.9) predicts the covariance of the §7po4 estimate given knowledge of the

source and sensor locations as well the TDOA estimate variances.

5.3 Source Estimate Based Upon Jpoa

A similar procedure may be followed for analyzing the precision of the location estimate

§poa, found via minimization of the Jpp 4 LS error criterion.
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The LS error-criteria (3.5) is expressed as

N 2
Jpoa(s) = Eéidoa : [92' — O({m;, m;y}, S)}

N
= > €idoa - {92' — i + ¢ — O({m;1, m;2}, S)r
=1

= (Abfy — A0y) W, (A — Aby,)

where W, is the diagonal matrix of weighting coefficients €;40, defined by (3.6), Afy, is
the vector of differences between the estimated and true DOA’s, and A#f is the vector of

DOA differences between the hypothesized source location s and the true location t,

€1doa
€2doa
VVdoa —
€Ndoa
0 — O({miy, mye},s) — oy
) — 1o O({mgy, my},s) — ¥
Ae@t = Aest =
On — YN O({mp1, mya},s) — YN

Returning now to (5.3) and applying the trigonometric identity:

; AW i— 0
cos #; — cosp; = 2sin (¢;_ )sm (¢ 5 )
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which for small angle differences (éZ /2 1);) is well approximated by:
cosf; — cos W A —(0} — 1p;) sin 1,

or

b — i —(cos B; — cos ;)
! v sin ;

Substitution of (5.3) into this expression yields:

. -1 a; coS ;

8;

The vector of estimate and true DOA differences, Az, may then be written as

Al = GASgoq where G =

Following an argument similar to that used for the derivation of the expressions in (5.8)

and (5.9), the displacement vector associated with §pp4 is calculated from

Asgon = (GTW,4,,G) ' GTW 4, Aby, (5.10)

and the corresponding displacement covariance is found to be

cov{Asy,,} = (GTWdoaG)_l (5.11)
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A comparison of (5.9) and (5.11) and their constituent matrices reveals that HT W 4,, H =
GTW,,,G and therefore the covariance predictors are equivalent. While the estimates
Stpoa and Sppa are clearly not identical, the approximations made in deriving these
closed-form estimate error expressions yield indistinguishable results. In situations where
the aforementioned approximations are less appropriate (severe noise conditions, extreme
source location bearings, etc.) the $rpoa and §poa estimators do vary considerably in
performance, as was demonstrated in the simulation results of the preceding section. Under
these conditions the estimate covariance expressions will be less applicable in predicting the
actual estimator error. However, as will be shown, the estimate error expressions, (5.9) and
(5.11), are accurate predictors of the estimators’ true performance given reasonable source

position and signal quality scenarios.

5.4 Analysis of Estimate Error Predictors

To evaluate the accuracy of (5.9) and (5.11) as predictors of the estimators’ true covariance,
two sets of simulations were conducted with the varying parameter being the positioning of

the sensor pairs.

Evaluation #1

In this first experiment, the ten-element, bi-linear sensor array shown in Figure 3.3
was reemployed. The array was situated at the center of one wall in a 6m X 6m x 4m
rectangular room as depicted in Figure 5.2. Once again, the eight pairings of diagonally
adjacent sensors were selected as the sensor pairs. Monte Carlo simulations consisting of

100 trials each were conducted across a grid of 36 source locations within the room. Source
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{ 6m

Figure 5.2: Location Error Evaluation #1: The ten-element bilinear sensor array with 0.5m
spacings is centered along one wall of a 6m X 6m x 4m rectangular room.

locations were spaced a meter apart along two distinct horizontal planes. For each source
location the true TDOA values for each sensor pair were calculated and then corrupted
by uncorrelated additive white Gaussian noise. The corrupting noise level at each sensor
pair was fixed at a moderate level, a standard deviation of 10~2m when scaled by c¢. The
LS-based estimates §7poa and §poa were then calculated for each trial via a quasi-Newton
algorithm constrained to search within the physical dimensions of the room.

Figure 5.3 displays the results of these simulations. Each of the plots in this figure
is from the perspective of a viewer directly above the room and looking downward. The
sensor array is represented by the five circles on the left vertical axis. In the top graph,
the 3600 (36 locations, 100 estimates per location) $7po4 estimates have been plotted with
dots. While a dot’s position as projected onto the floor is clear from the figure, the height
is ambiguous. Because of the symmetry involved in the setup of this array within the room

environment, the choice of source locations at each height was limited to the half-plane
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Figure 5.3: Location Error Evaluation #1: (top graph) A top-down view of the §7poa
source estimates for the 100 trial simulations at 36 source locations. (bottom graph) Prin-
cipal component axes of the predicted estimate error covariance for each source location.
Alphabetic labels refer to those source locations for which numerical data is presented in
Table 5.1.

63



delineated by the line normal to the center of the array. Source locations on the remaining
half-plane would presumably display the same properties. In each of these plots, the lower
horizontal half-plane contains source locations at a height of 2m, level with the mid-line of
the sensor array. The upper half-plane is at a height of 3m, a meter vertically above the
array.

The bottom graph in Figure 5.3 shows the principal component vectors of the predicted
covariance matrix scaled to 2.5 standard deviations. For each source location, the predicted
error covariance matrix was calculated via (5.9), or equivalently by (5.11). An eigenvector-
eigenvalue decomposition of the (3 x 3) matrix yields its principal components vectors [61].
Geometrically, if cov{Asg,,} is positive definite with eigenvalue-eigenvector pairs (A;, e;)

for i = 1,2, 3, all the (3 x 1) vectors x which satisfy:

(x — %) (cov{Asgoa}) " Hx — %) = h?

define a hyperellipsoid centered about X with axes +hv/A;e;. The eigenvalues correspond
to the variance of the data set projected onto the corresponding eigenvector or principal
component. Setting h = 2.51in the above expression will therefore generate an hyperellipsoid
with axes extending 2.5 standard deviations in either direction from the center of the conic
along each of the principal component vectors. If the distribution of source estimates
possesses a trivariate normal density, a given estimate would have a 0.9 probability of falling
on or within such a hyperellipsoid [61]. In each case, the estimator has been assumed to be
zero-biased and thus the center of the hyperellipsoid is the given source location. The lines
in the bottom graph display the scaled principal component vectors which correspond to

the axes of the hyperellipsoid associated with the predicted error covariance of each source
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Standard Deviations of Standard Deviations of
Point || Principal Components (cm) Point || Principal Components (cm)
Label pred. S8rpoa Spoa Label pred. S8rpoa Spoa
1% 22.7 | 21.0 | 21.7 1%¢ 35.4 | 33.0 | 33.0
A 274 1 9.0 | 149 | 9.1 D 27d | 3.7 3.2 3.2
3rd | 1.8 1.8 1.8 3rd | 3.0 2.8 2.8
total | 24.6 | 25.8 | 23.6 total | 35.7 | 33.3 | 33.3
1% 10.6 10.5 | 10.5 1% 33.6 | 34.1 | 34.0
B 27d |19 | 1.9 | 1.9 . o7d | 37 | 38 | 38
34 | 1.5 1.3 | 1.3 34 | 35 | 36 | 3.6
total | 10.9 10.8 | 10.7 total | 33.9 | 34.5 | 344
1% 10.7 | 10.7 | 10.7 1% 39.9 | 35.6 | 35.3
c 27d | 2.9 2.2 | 2.2 . 27d |40 | 42 | 4.2
3rd | 2.0 L9 | 1.9 34 | 39 | 38 | 3.8
total | 11.1 11.1 | 11.1 total | 40.2 | 36.0 | 35.7

Table 5.1: Location Error Evaluation #1: The principal component standard deviations
for the predicted error covariance and the sample covariances derived from the §7po4 and
Spo4 estimates. Point labels refer to source locations in Figure 5.3.

location shown in the top graph.

Table 5.1 presents detailed numerical data for selected source locations in Figure 5.3.
In each case, the principal component standard deviations are listed for the predicted error
covariance as well as the sample covariances associated with the sets of s7po4 and §poa
estimates. A fourth row gives the total standard deviation. This value is calculated as the
square root of the component variance summation and is equivalent to the square root of
the trace of the particular covariance matrix.

Several observations are apparent from Figure 5.3 and Table 5.1. The predicted error
covariance closely models, to within a few centimeters, the true performance of both the
Stpoa and Sppa estimators. As the figure suggests and the table quantifies, disparities
between the predicted and observed are most extreme in those cases involving relatively
large error variances, where the linearity assumptions used in the derivation of the error
covariance predictor are less valid. For instance, consider the source point labeled ‘D’,

located at (3.5m,0.5m) and at a height of 2m. The total observed standard deviation is
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33.3cm for each estimator while the predicted total is 35.7cm. The 2.4cm difference is
largely accounted for by the first principle component. At the other extreme is the point
‘B” at (1.5m,1.5m) and height 2m. The disparity between predicted and observed total
standard deviation is only .lcm. For sources positioned near the boundary of the room,
this disparity between observation and prediction may be due, in part, to artificially low
observed covariance values brought about by the search constraint placed on the LS-error
criteria minimizer. Those source locations that are estimated to be outside of the physical
room are placed at the room boundary and the spread of source estimates is subsequently
skewed. This effect is apparent in the statistics for point ‘F’ where there is a visible cluster of
estimate points at the wall of the room and the observed first principal component standard
deviations are sizably less than the predicted value.

As expected, the source estimation procedure is most accurate for broadside sources
close to the sensor array. Estimate precision is extremely sensitive to bearing for sources
near end-fire conditions and the quality of the range estimates degrades rapidly as the true
source range increases. These observations are consistent with results reported for standard
linear arrays, as in [38]. For a fixed (x,y) position relative to the floor, the variation in
height of the half-planes had little effect on the estimators’ precision. An exception to this
rule being the source location labeled ‘A’ at location (0.5m,5.5m) and height 3m and its
symmetric counterpart at (0.5m,0.5m) and height 2m. While the former is farther from
the sensors than the latter, it possesses a milder bearing condition relative to the array. As
the figure illustrates, this small improvement in bearing angle has a dramatic effect on the
error spread of the source’s location estimates in comparison to its counterpart’s. Finally,
with regard to the LS-error criteria, the results of this set of simulations are consistent with

those of the previous section. For broadside sources with a large DOA angle, the §7pp 4 and
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S§po4 estimators perform comparably. With source locations close to the end-fire condition,

the §pp4 estimate obtains a slight performance advantage at this noise level.

Evaluation #2

In previous set of simulations, those source locations that were estimated with the
highest degree of precision possessed two key features: they were broadside (or nearly
broadside) to the sensor array and they were not particularly distant from the sensors. Short
of placing physical obstacles at those positions deemed undesirable, the span of potential
source locations within a room cannot be dictated. However, there may be a great deal of
liberty granted in the placement of the sensors. The results of the Evaluation #1 motivated
the choice of the array configuration illustrated by Figure 5.4 in which a 0.5m x 0.5m
square array has been centered along each wall of the 6m x 6m x 4m rectangular room.
This sensor arrangement provides for an improved coverage of the room environment. The
vast majority of potential source locations are at a broadside angle to and in the proximity
of at least one sensor pair. The diagonal combinations within each sub-array were selected
as the sensor pairs, yielding the same number of TDOA estimates (eight) and the same
sensor spacings (.5v/2m) as used in the previous experiment. Monte Carlo simulations were
conducted in an identical manner to those of Evaluation #1. However, now that the array
configuration possesses the added plane of symmetry relative to the rectangular room, the
grid of source locations was selected from four parallel quarter-planes at heights ranging
from the midpoint of the room, 2m, to a half-meter short of the ceiling, 3.5m.

The results of this experiment are presented in Figure 5.5 and Table 5.2. Once again,
expressions (5.9) and (5.11) accurately predict the results of the Monte Carlo simulations.

Discrepancies between observed and predicted values continue to be greatest in the large
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Figure 5.4: Location Error Evaluation #2: Four sets of 0.5m X 0.5m square sensor arrays
are positioned at the center of each wall in 6m x 6m x 4m rectangular room.

variance cases. The Srpo4 and Spoa estimators perform comparably under these cir-
cumstances as well with the §pp4 estimate being mildly preferable for the extreme source
location conditions. Source height has little effect on the overall estimation precision, ex-
cept under those circumstances where altering source height significantly alters a source’s
bearing angle relative to a sensor pair. In short, the trends from Evaluation # 1 remain
apparent with this alternative sensor arrangement. However, the overall source localization
error has been reduced significantly as a result of the more judicious placement of sensors.
For nearly all 36 source locations, the total error standard deviation has declined markedly
and the error hyperellipsoids are considerably less eccentric than those generated via the

bilinear array of the previous experiment.
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Figure 5.5: Location Error Evaluation # 2: (top graph) A top-down view of the §7poa
source estimates for the 100 trial simulations at 36 source locations. (bottom graph) Prin-
cipal component axes of the predicted estimate error covariance for each source location.
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Standard Deviations of Standard Deviations of
Point || Principal Components (cm) Point || Principal Components (cm)
Label pred. S8rpoa Spoa Label pred. S8rpoa Spoa
1%¢ 14.7 | 13.5 | 13.3 1%¢ 4.5 4.9 4.7
A 274 | 54 | 4.9 | 4.9 D 274 1 2.0 2.0 | 2.1
3rd 2.8 2.8 2.8 3rd 1.2 1.2 1.2
total | 15.9 14.6 | 14.4 total | 5.0 5.4 5.3
1% 6.6 5.1 5.0 15 4.1 4.2 4.2
B 27d |29 | 29 | 29 . 2nd |35 | 3.8 | 3.8
3rd 1.9 2.0 2.0 3rd 2.3 2.3 2.2
total | 6.6 6.2 6.1 total | 5.8 6.1 6.0
1% 3.2 3.8 3.8 1% 4.5 4.7 4.6
c 2rd | 3.1 3.3 | 3.2 . 27d | 2.0 1.8 | 1.8
3rd 2.9 2.7 2.7 3rd 1.2 1.5 1.4

total | 5.3 5.7 5.7 total | 5.0 5.2 5.1

Table 5.2: Location Error Evaluation #2: The principal component standard deviations
for the predicted error covariance and the sample covariances derived from the §7po4 and
Spo4 estimates. Point labels refer to source locations in Figure 5.5.

5.5 Discussion

As Evaluation #2 illustrates, the placement of sensors within a room can dramatically
impact the quality of the source location estimates. Sensor positioning is usually subject
to a number of restrictions. These may be due to the physical or aesthetic constraints of
the environment. They may also be due in large part to the requirements of the time-delay
estimation procedure. It has been assumed throughout this discussion that the source local-
ization process is independent of the TDOA estimation, requiring that only the parameters
of sensor pair locations, TDOA estimates, and the estimate variances be passed from the
latter to the former. However, the precision of time-delay estimators is highly dependent
upon the coherence or similarity of the signals received at the two sensors. It is therefore
essential to the quality of the TDOA estimates that the separation of the individual sensors
within each sensor pair be small enough to prevent significant disparities in the received

signal quality or content across the sensor pair. This qualification makes certain placement
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scenarios, that are seemingly advantageous from a purely localization standpoint, ineffec-
tive due to the detrimental effects on the quality of the time-delay estimates. The increased
TDOA variances essentially overwhelm the advantages of a broadened baseline. In practice,
the selection of sensor separation distances requires a knowledge of the environmentally-
dependent performance characteristics associated with the time-delay estimation procedure
employed. The simulations presented here have used a sensor separation distance of .5v/2m
along with a TDOA noise standard deviation of .01m. This has proven to be a realistic and
appropriate combination of these parameters for this room setting.

The considerations expounded upon in the preceding paragraph apply only to the sepa-
ration of individual sensors within a sensor pair, not to the overall placement of the sensor
pairs themselves. The choice of sensor pair numbers and positions ultimately depends upon
minimizing some form of a precision-based cost function that is constrained by the require-
ments of the physical environment and the intra-pair separation distances. The details and
method of minimizing such a cost function will vary dramatically from one application to
another. Some work in this area related specifically to speech source acquisition has been
reported in [5, 1, 62, 63]. In many scenarios, prior information concerning the potential
locations of signal sources or a set of spatial regions from which it is desirable to obtain
‘good’ location estimates may be specified and the complexity of the cost function will be
greatly reduced. Regardless of the specifics, at the core of this procedure there must be a
means of evaluating estimation accuracy given source and sensors locations. It is here that
the expressions for predicting error covariance find application.

Another application of the error covariance predictors is as the basis of a scheme for
distinguishing sources in a multi-source tracking system. Consider a situation where a

number of source location estimates {sy,ss,...,sy} have been evaluated over a period of
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time. It is desired to know whether or not these estimates are associated with a single, non-
moving source or several such sources. A null hypothesis testing approach may be adopted
to determine if the observed location estimates are consistent with a single source hypothesis
[57]. Let s be the sample mean of the estimate points and the assumed true location of
the hypothesized single source. Using (5.9) or (5.11), the predicted error covariance for
the location § is evaluated and denoted the matrix by C. The hypothesized error region is
assumed to be normally distributed and accordingly, if the single source model were valid,
the location estimate samples would be derived from a p-dimensional normal distribution
with mean § and covariance C. The scalar statistic
N
S=3 (si-85"C7'(s; - 5)

=1

would possess a chi-squared distribution with p(/N — 1)-degrees of freedom (S ~ XZ(N—I))‘
Letting Pr be the desired false-alarm probability, the acceptance region that is maximally
consistent with the hypothesized model while satisfying the false-alarm criterion is given by

the interval:

a<S<bh such that px2(
P

@=pe
b
and /a P2 (z)dz =1 - Pp

p(N-1)

. o1 . . . . 2 . .
where pX?a(N—l) (x) is the probability density function associated with the Xp(N=1) distribu-
tion. If .S is not in this interval, the single source model is rejected in favor of a multiple-

source or moving-source scenario.
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Part 11

Practice
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Chapter 6

Practical and Computational

Considerations

This chapter is intended to illustrate some of the practical issues involved in calculating the
location estimates detailed in Chapter 3. These estimation procedures involve nonlinear
error-criterion, Jrpo 4 or Jpo 4, the minimization of which cannot, in general, be performed
analytically. Nonlinear function optimization typically entails some form of iterative search
in the function parameter space. While this process may be facilitated through an efficient
selection of candidate points, these techniques are computationally burdensome and subject
to a host of practical considerations. In general, there is a fundamental trade-off between
algorithm efficiency and robustness. The most efficient means are sensitive to discontinuities
in the objective function as well as to the choice of the initial search point. When applied
to an overly-complicated function, such methods will frequently obtain local minima or
pursue an undesirable tangent. Meanwhile, more robust approaches involving a number
of starting points or grid searches, will tend to produce more reliable results under these

circumstances but at the cost of time and resources. The choice of an optimization method
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Figure 6.1: Illustration of the Error Criterion Associated with a Steered-Beamformer-Based
Locator: A 3-dimensional mesh plot (left) and a contour image (right) of the beamformer
output power generated by a set of candidate source locations. The source locations repre-

sent a horizontal rectangular grid at a height of 2m inside the enclosure with 10cm spacings
between test points.

ideally depends upon the nature of the function to be minimized and necessitates an element
of ‘conventional wisdom’ on the part of the user.

As will be shown in this chapter, the Jrpo4 and Jpo4 error criteria exhibit the con-
tinuity and unimodal properties appropriate for efficient optimization. This situation is
contrasted by the objective function associated with the ‘focalization’ procedure alluded to
in Chapter 1. This presentation is then followed by a comparison of several appropriate

nonlinear optimization routines applied specifically to this localization problem.

6.1 Characterization of Error Criterion

Figure 6.1 illustrates the nature of the localization criterion associated with the steered-
beamformer-based genre of locators discussed in Chapter 1. The displayed plot was pro-
duced using the ten-element bilinear array and 6m x 6m x 4m enclosure of Figure 5.2 and an
ideal source located 20° off broadside at a range of 4.25m and height of 2m (identical to the

height of the array midline). For this example, the sensor recordings were generated from
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a high-quality speech segment by artificially applying delays appropriate for a point source
at the designated location. No additional modeling was performed. The resulting set of
sensor signals corresponds to a highly ideal situation, flawlessly delayed versions of identical,
noiseless source signals as well as complete knowledge of th