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ABSTRACT

Detection and localization of speakers with microphone arrays is

a difficult task due to the wideband nature of speech signals, the

large amount of overlaps between speakers in spontaneous con-

versations, and the presence of noise sources. Many existing au-

dio multi-source localization methods rely on prior knowledge of

the sectors containing active sources and/or the number of active

sources. This paper proposes sector-based, frequency-domain ap-

proaches that address both detection and localization problems by

measuring relative phases between microphones. The first ap-

proach is similar to delay-sum beamforming. The second approach

is novel: it relies on systematic optimization of a centroid in phase

space, for each sector. It provides major, systematic improvement

over the first approach as well as over previous work. Very good

results are obtained on more than one hour of recordings in real

meeting room conditions, including cases with up to 3 concurrent

speakers.

1. INTRODUCTION

Speaker segmentation and tracking are useful in multi-party con-

text such as in meeting rooms, to analyze large amounts of data

automatically and to enhance browsing experience. Microphone

arrays are useful for such tasks, by providing means for instanta-

neous detection and localization of multiple concurrent speakers.

A previous work [1] motivated and introduced a sector-based

approach for localization of multiple wideband sources in general,

and speech sources in particular. To summarize, spontaneous in-

door multi-party speech features many overlaps between speakers,

as well as reverberations and noise sources such as laptops and pro-

jectors. Therefore, detection and localization of multiple concur-

rent, often wideband sources is needed. The direction taken here is

to use Uniform Circular Arrays (UCAs), because their character-

istics are almost invariant with respect to direction [2], therefore

not depending on particular room dimensions, and imposing no

constraint on the location of the source(s).

Existing approaches for microphone array source localiza-

tion can be divided in two groups: parametric [3] and non-

parametric [4]. The review made in [1] suggests that for both

groups of methods, there is a need for detection and localization

of acoustic waves coming from a sector of the space – i.e. “sector-

based”, rather than from a specific point or direction – i.e. “point-

based”. One sucessful work in this direction is [5]: a coarse-to-fine

approach that relies on beamsteering heuristics and prior knowl-

edge of room dimensions, among other things. On the contrary,

[1] defined a generic Sector-based Activity Measure (SAM), that

relies only on knowledge of the geometry of the microphone ar-

ray. A time-domain implementation called SAM-PHAT was intro-

duced and tested on real data, achieving correct localization of up

to 3 concurrent speakers. However, it did not address the detec-

tion issue, due to excessive “leakage”: for a single active source,

several sectors would feature a high SAM-PHAT value. In other

terms, not only the correct sector would have a high activity value,

but also its neighbours (false alarms).

Section 2 briefly summarizes the previously proposed time-

domain approach, then proposes two frequency-domain ap-

proaches. While the first one is similar to point-based delay-sum

beamforming, the second one is novel: it relies on systematic cen-

troid optimization in phase space, for all points of each sector.

Section 3 describes the meeting room recordings. A preliminary

experiment given in Sect. 4 motivates metrics and experiments,

which are described in Sect. 5 and 6, respectively. Near optimal

results are obtained on hard multisource cases, and applicability to

human speech is demonstrated. In particular, the novel approach

provides major, systematic improvement over both delay-sum ap-

proach and previous work. Section 7 provides a discussion and

concludes with future directions.

2. SAM METHODS

Parametric methods for source localization search physical space

for local maximum(s) of a “point-based” measure of activity,

which is estimated for each point of space, from the recorded mul-

tichannel signals. On the contrary, SAM methods partition the

space into sectors, and define an activity measure for each sector.

One time frame of multichannel samples is denoted by vectors

x1, . . . , xm, . . . , xM , with M the number of channels and xm ∈
R

Nsamples . The corresponding positive frequency Fourier coeffi-

cients representations are denoted by X1, . . . , Xm, . . . , XM , with

Xm ∈ C
Nbins (e.g. obtained by FFT). Each SAM method de-

fines an activity function Ak (X1, . . . , XM ) ∈ R for each sector

k = 1 . . . NS. The higher this value is, the more likely the sector

is to contain at least one active source, which can then be used to

take a hard decision, for example by applying a threshold on Ak.

2.1. Partition of the Search Space into Sectors

The search space is partitioned into NS connected volumes (sec-

tors) [1]. For example, the space around a horizontal planar micro-

phone array can be partitioned in “vertical slices”: for k=1 . . . NS:
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where r, az, el designate radius, azimuth and elevation w.r.t. the

microphone array center; microphones are all in the sphere r < r0.

2.2. SAM-PHAT approach (SP)

SAM-PHAT defines sector activity ASP
k with a 1-dimensional in-

tegration. For each microphone pair, the time-domain GCC-PHAT

function [6] is summed over a range of time-delays corresponding

to the sector. For complete details the reader is invited to refer

to [1]. One important point for the following discussion is the im-

plementation of the time-domain GCC-PHAT, for each possible

microphone pair p = 1 . . . P :

RPHAT
(p)(µ) , Re

»

IFFT

„
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|Gp(f)|
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, (2)

where µ ∈ N is a time-delay in samples, f ∈ N is a discrete

frequency (1 ≤ f ≤ Nbins), Re(·) denotes real part, and G(p)(f)
is the frequency domain cross-correlation for microphone pair p:

G(p)(f) , Xip(f) · X∗
jp

(f), (3)

where (·)∗ denotes complex conjugate, ip and jp are indices of the

2 microphones: 1 ≤ ip < jp ≤ M . Note that P = M(M −1)/2.

2.3. SAM-SPARSE approaches

Previous experiments [1] showed that SP suffers from “leakage”,

as explained in the Introduction. A possible cause is the non-

linearity introduced by Eq. 2. It assumes a single source occupy-

ing the entire spectrum, which is rarely the case in practice (noise

and/or other speakers). The methods proposed here perform anal-

ysis in the frequency domain only. They rely on a sparsity assump-

tion, which is reasonable in speech [7]: within each frequency bin

f , only one sector kmax(f) is judged as active:

kmax(f) , arg max
k

(ak,f ) , (4)

where ak,f (X1(f), . . . , XM (f)) is a frequency bin activity func-

tion. Next, for each sector the global activity is estimated by count-

ing the number of active frequency bins:

ASAM
k (X1, . . . , XM ) , card {f |kmax(f) = k } . (5)

Both SAM-SPARSE methods presented below define ak,f as:
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where ∠(·) is the argument of a complex number, Φ
(p)
k,f is a phase

value (angle), fixed for each triplet (k, f, p). ak,f is maximized

when several pairs have ∠G(p)(f) close to Φ
(p)
k,f . The hope is to

circumvent spatial aliasing limitations of a single microphone pair,

by combining information from multiple microphone pairs. This

way, not only low frequencies, but also higher frequencies can be

used for low resolution (“sector-based”) analysis. Each frequency

bin is treated independently and phase unwrapping is not needed.

Note that: kmax(f) , arg max
k

(ak,f ) = arg min
k

(dk,f ) (7)

with: dk,f ,

P
X

p=1

sin2

 

∠G(p)(f) − Φ
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Table 1. Target values of the PNc≥1 and Nc metrics, as a func-

tion of the α statistic and Na, the number of simultaneously active

sources in the annotation.
Na PNc≥1(Na) Nc(Na)

1 α α
2 1 − (1 − α)2 2α(1 − α) + 2α2

3 1 − (1 − α)3 3α(1 − α)2 + 6α2(1 − α) + 3α3

Table 2. Results (in %) of the two working points WP1 and WP2

on the development set. “min” and “mean” figures are computed

on utterance recall. “–” denotes that the target is unknown.

Seq. #1 Seq. #4

System FAR FRR min mean FAR FRR min mean

SP-WP1 1.0 52.7 0.0 47.3 0.1 85.3 0.0 15.6

SSD-WP1 0.4 8.5 0.0 91.5 0.8 50.7 24.3 50.6

SSC-WP1 0.4 2.8 15.3 97.2 1.4 41.7 36.4 58.6

target 0.5 0 100 100 – – – 67.4

SP-WP2 23.6 0.50 90.3 99.5 10.8 30.3 35.1 70.9

SSD-WP2 20.5 0.6 83.1 99.4 33.7 15.7 57.6 84.7

SSC-WP2 6.8 0.4 81.9 99.6 14.7 21.3 59.1 79.1

target 0 0.5 100 100 – – – 67.4

Note that, as SAM-PHAT, the SAM-SPARSE methods rely on

phase information only, but not on energy. This choice is inspired

by (1) the GCC-PHAT weighting, which is well adapted to rever-

berant environments, (2) the fact that Interaural Level Difference

is known to be much less reliable than time-delays, as far as lo-

calization is concerned. As for computational complexity, it must

be noted that since each frequency bin is processed independently,

the SAM-SPARSE methods can be parallelized in a straightfor-

ward manner.

Sections 2.4 and 2.5 propose two definitions of Φ
(p)
k,f .

2.4. SAM-SPARSE-D (SSD)

“D” stands for delay-sum. Similarly to classical steered beam-

former source localization approaches [3], a linear phase is used:

Φ
(p)
k,f

SSD
, π

f

Nbins
µ

(p)
k , (9)

where µ
(p)
k is the time-delay (in samples) associated with the geo-

metric center point of sector k, and microphone pair p.

2.5. SAM-SPARSE-C (SSC)

“C” stands for centroid. We note that SSD defines sector-based

activity values based on point-based analysis. In SSC, the linear

phase in Eq. 9 becomes an unconstrained phase value Φ
(p)
k,f , such

that ak,f is optimized for all points in sector k, not just for its

geometric center:

Φ
(p)
k,f

SSC
, arg min

ψ∈[−π,+π]

N
X

n=1
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θ
(p)
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2

!
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where θ
(p)
k,n (n=1...N ) are phase values corresponding to micro-

phone pair p and a grid of N points in sector k. This grid of points

is defined according to (1) microphone array’s geometry, (2) sec-

tors’ definition. In experiments below, a circular array is used with

radial sectors, as in Eq. 1. Thus, the grid is defined uniformly in
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Fig. 1. Activity values Ak for each method, on the beginning of Seq. #4 (development set). Dark colors denote low activity, and light colors

denote high activity. The true speaker location is 326.3o. The subject starts speaking at time 22.7 s and says a few isolated words.

spherical coordinates (r, az, el): it has constant angular intervals

for varying radius.

Note that the sum in Eq. 10 can be written B cos (C − ψ),

where B and C do not depend on ψ. Therefore, numerical search

for its unique minimum over [−π, +π] is simple and fast.

3. DATA

Five real 16kHz audio sequences were taken from a meet-

ing room audio-visual corpus available online [8], recorded

with a horizontal circular 8-mic array (10 cm radius) set

on a table. Complete data and description can be found

at: http://glat.info/ma/05-ICASSP _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Seq. #1 to #3 were recorded with with either 2 or 3 simultaneously

active loudspeakers, at various locations. Seq. #4 has a single

human speaker. Seq. #5 has multiple concurrent human speakers.

Total duration exceeds 1 hour.

4. PRELIMINARY EXPERIMENT

This section summarizes conclusions of an experiment made with

a point-based source localization approach. The reader can refer

to [1] for complete details and to [8] for implementation. The

point-based localization was applied on Seq. #4 (single human

speaker). It appeared that correct localization is achieved on a pro-

portion of frames annotated as “speech”, equal to α=67.4%.

Another conclusion of this experiment is that frame energy

does not correlate with correct localization. That is why Sect. 6

reports results on all frames annotated as “speech”. One conse-

quence on real human multispeaker cases (Seq. #5) is that results

should be compared to expectations derived from α.

5. METRICS

The major difference with metrics used in [1] is that here a source

is considered as correctly detected if it is exactly within a sector

marked as active in the result. In [1], the source was allowed to be

±5o outside of an active sector to be considered as detected.

Three types of metrics are used: (1) False Alarm Rate (FAR)

and False Rejection Rate (FRR) to evaluate global performance,

(2) “frequency distributions” to determine whether a method suc-

ceeds to detect and localize concurrent sources, and (3) “utterance

recall” to verify practical usability on real human speech.

FAR/FRR: a varying threshold is applied on sector activ-

ity Ak, true/false positives/negatives are counted for each thresh-

old, and used to derive FAR, FRR and Equal Error Rate (EER).

Frequency distributions: On each frame annotated as

“speech”, the number Nc of correctly found sources is counted.

Two metrics are derived: PNc≥1 the proportion of “speech” frames

where at least one source is correctly found, and Nc the average

number of simultaneous sources correctly found. The target (see

Table 1) is based on the α value, which is 0.674 in the case of

humans (as justified in Sect. 4), and 1.0 in the case of loudspeak-

ers. It is important to note that this target is exact in the case of

loudspeakers, but only approximate in the case of humans.

Utterance recall: final applications of source detection and

localization include speech/silence segmentation and/or speaker

tracking. Thus, “utterance recall” is defined for each utterance,

as the proportion of frames where the corresponding source is cor-

rectly localized. The average target for “utterance recall” is α.

6. EXPERIMENTS

The focus is on loudspeaker recordings (Seq. #1 to #3), since

their speech/silence annotation is perfect, while Seq. #4 and #5 are

used to verify applicability on human speech (approximate target).

Time frames were defined as 32 ms long, with 16 ms overlap, and

the following parameters were fixed: Nsamples=512, Nbins=512

(i.e. zero-padded FFT was used), and NS=18 sectors of 20o each.

As explained in [9], evaluating FAR/FRR curves on some test

data is not enough, since in a real system the threshold has to be

fixed before seeing any of the test data, rather than after. A devel-

opment set was defined: the first 148 s of Seq. #1 (2 loudspeak-

ers) and 30.3 s of Seq. #4 (single human) to determine two Work-

ing Points: (WP1) a conservative threshold TWP1 (FAR=0.5%),

(WP2) a lower threshold TWP2 < TWP1 (FRR=0.5%). The test

set is the rest of the data (more than 1 hour duration).

6.1. Development set

Fig. 1 shows activity values for the 3 methods on human data. SSD

and SSC approaches produce much less noise (leakage) than SP,

as confirmed by the EER values on the 2-source case (Seq. #1):

9.9% for SP, 3.8% for SSD and 1.6% for SSC.

Next, the thresholds TWP1 and TWP2 are determined on

Seq. #1 to be as close as possible to the desired FAR (resp. FRR).

Results are reported in Table 2. WP1 is reasonably close to the

desired FAR on both loudspeaker and human data, but FAR and

FRR obtained for WP2 vary a lot for different methods, on human

speech. Thus, only WP1 is used in experiments on the test set.



Table 3. Test set results at Working Point WP1. Values are in %, except for Nc, which is a number of speakers. Values closest to the target

are indicated in bold (“–” means unknown target). “u.r.” means utterance recall.

Seq. #1 Seq. #2 Seq. #3

Metric Target SP SSD SSC SP SSD SSC SP SSD SSC

FAR 0.5 0.5 0.5 0.5 0.4 0.4 0.5 0.3 0.4 0.6

FRR 0 82.2 28.5 12.4 88.2 29.8 17.1 87.0 34.4 11.2

PNc≥1(2) 100 79.0 100 100 49.6 100 100 49.2 99.9 100

Nc(2) 2.0 0.8 1.8 2.0 0.5 1.8 1.9 0.5 1.7 1.9

PNc≥1(3) 100 34.6 99.7 99.8 19.1 99.7 99.8 19.1 98.3 99.8

Nc(3) 3.0 0.4 2.0 2.5 0.2 1.9 2.4 0.22 1.7 2.6

(a) Loudspeakers

Seq. Metric Target SP SSD SSC

#4 FAR – 0.4 1.4 1.6

FRR – 70.7 43.8 34.7

min u.r. – 3.6 19.4 13.0

mean u.r. 67.4 31.6 57.2 65.6

#5 FAR – 1.4 3.0 3.0

FRR – 72.9 50.5 42.6

PNc≥1(2) 89.4 51.9 80.0 90.8

Nc(2) 1.3 0.6 1.0 1.3

PNc≥1(3) 96.5 51.4 86.7 95.1

Nc(3) 2.0 0.7 1.4 1.6

(b) Human speakers

6.2. Test set

Table 3a gives detailed results on loudspeaker recordings for all

three methods. Overall the SP method fails producing results close

to the target in all cases (see FRR metric). The SSC method pro-

vides the best results for all metrics, especially on the 3-source

cases (see Nc(3) metric).

Seq. #2 appeared to be the most difficult for all three meth-

ods. This suggests that disparity in received power of the various

sources is a major factor of degradation for all methods, although

the SSC results are still close to optimal. For both SSD and SSC,

results on Seq. #1 and #3 are comparable. We can therefore expect

these methods to cope better with low angular separation of the

sources. This has to be confirmed with further experiments.

Results on recordings with real human speakers are given in

Table 3b. Although the target values are indicative only (see

Sect. 5), it is possible to draw some conclusions. SP obtains very

high FRR – more than 70%, which makes it unusable in practice.

SSC has results which are the closest to the target for all metrics.

FAR is slightly higher than on loudspeaker data, which can be ex-

plained by non-speech sounds (body motion, throat noises) on seg-

ments annotated as “silence”. In particular, SSC achieves much

better results on multispeaker cases.

On Seq. #4, the minimum utterance recall of SSC is more than

8 times the FAR, so post-processing is likely to separate the speech

from the noise so that each short utterance is detected.

7. DISCUSSION, CONCLUSION AND FUTURE PLANS

Frequency-domain analysis provides a major improvement over

time-domain analysis: the new SAM-SPARSE methods do not

suffer from the leakage problem of SAM-PHAT. The consequence

is that SAM-SPARSE methods are able to both detect and locate

multiple sources, while SAM-PHAT only provides location infor-

mation. One cause for this improvement is likely to be the sparsity

assumption, which prevents two sectors from being active in the

same frequency bin. On the other hand, the sparsity assumption

has an intrinsic limitation: a simple experience of thought shows

that SAM-SPARSE methods will not, by definition, differentiate

between all sectors inactive and all sectors equally active. How-

ever, the latter may not be likely to happen in practice.

Overall, we can safely state that SAM-SPARSE methods pro-

vide results that are good enough to detect and locate up to 3 con-

current speakers in an indoor environment, which makes them us-

able in a practical application. Computational complexity was low

enough for SAM-SPARSE-D to be implemented in real-time on a

single DSP chip by one of us.

The present study also confirms the fundamental difference

between point-based analysis and sector-based analysis: SAM-

SPARSE-C always performed better than SAM-SPARSE-D. Fu-

ture directions include investigating more complex activity func-

tions, as well as applicative experiments (e.g. coarse-to-fine

search). Also including more speech-specific features may pro-

vide additional improvement. We note that more complex SAM-

SPARSE methods could still be implemented in real-time: paral-

lelization is straightforward, since they treat each frequency bin

separately.
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