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ABSTRACT

Detection is usually done by comparing some criterion to a thresh-

old. It is often desirable to keep a performance metric such as False

Alarm Rate constant across conditions. Using training data to select

the threshold may lead to suboptimal results on test data recorded

in different conditions. This paper investigates unsupervised ap-

proaches, where no training data is used. A probabilistic model is

fitted on the test data using the EM algorithm, and the threshold value

is selected based on the model. The proposed approach (1) does not

use training data, (2) uses the test data itself to compensate for sim-

plifications inherent to the model, (3) permits the use of more com-

plex models in a straightforward manner. On a microphone array

speech detection task, the proposed unsupervised approach achieves

similar or better results than the “training” approach. The methodol-

ogy is general and may be applied to other contexts than microphone

arrays, and other performance metrics than FAR.

1. INTRODUCTION

This paper deals with the detection task. For example, in the case of

speech source detection, each data sample needs to be classified as

either “active” or “inactive”. Usually some criterion (“activeness” in

Fig. 2c) is compared to a threshold. Various possible values of the

threshold correspond to various (FAR, FRR) “working points” on

the Receiver Operating Characteristic (ROC) curve (Fig. 1). FAR
is False Alarm Rate and FRR is False Rejection Rate. This paper

investigates automatic threshold selection: the main focus is not to

improve the global characteristic of the detector (ROC curve), but

rather to be able to select a priori a user-specified working point

(target value FART), see Fig. 1. The FAR must remain as constant

as possible across various conditions (noisy, clean etc.).

Trying to obtain a priori a fixed, given FART could be useful

for intrusion detection, as in password verification, where the num-

ber of false alarms needs to be stable across users and noise condi-

tions, in order to make the system usable for regular users as well as

efficient enough to detect unwanted intruders. With “training” ap-

proaches, a threshold value is usually selected on training data, on

which the true classification (ground-truth) is known. The threshold

is then kept fixed and applied on new, unseen test data. If training and

test data represent very different conditions (e.g. noisy and clean),

a fixed threshold leads to suboptimal results. Although variations

exist, such as time-varying threshold learning approaches [1] and

validation approaches [2], all are intrinsically limited by the overall

variety of the “training” data: this is the “generalization” issue.

Alternatively, unsupervised approaches allow for condition-

dependent threshold selection, on the test data itself, as in a heuristi-

cal study on Electro-Encephalogram classification [3]. In the present
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Fig. 1. ROC curve. The task is to select a threshold δx such that

the obtained FAR (red triangle) is as close as possible to the tar-

get FART (black dot). Ideally FAR = FART.

Approach: training model only model+data

Dimensionality D = 1 D = 1 D = 1 D > 1
Probabilistic model none EM fitting on “test” data.

(no ground-truth)

Table 1. Threshold selection approaches used in this article.

paper, the threshold value is selected in a principled way, by pre-

dicting the FAR a priori, without training data. On each test data

(recording), a probabilistic model is fitted using EM [4]. From the

fitted model, a threshold value is chosen, such that an estimate of

the FAR will be close to a user-specified target value FART. These

approaches realize composite hypothesis testing [5], where the re-

sult can be sensitive to the quality of the parameter estimation. This

paper proposes a “model+data” posterior-based approach that com-

pensates model imperfections, using the test data itself, and permits

to use multidimensional models in a straightforward manner.

Results are reported on a microphone array detection task, where

speakers in a meeting room must be correctly detected and located.

Both space and time are discretized, and for each (sector of space,

time frame) pair an “activeness” value is estimated, as in [6, 7].

Compared to the “training” approach, unsupervised model-based ap-

proaches (see Tab. 1) “generalize” better. The obtained FAR is more

stable across conditions, without using training data. The proposed

approach is generic, and could be applied to other tasks than micro-

phone array detection, and other metrics than FAR. A preliminary

experiment on FRR confirms its superiority over “training”.

The rest of this paper is organized as follows. Section 2 de-

scribes the microphone array speech detection task. Section 3 de-

scribes the “training” approach, and experiments highlight the gener-

alization issue. Section 4 presents the proposed unsupervised model-

based approaches, along with experimental results. Application to

multidimensional models is presented in Section 5. Section 6 con-

cludes. The main focus being the threshold selection task, the prob-

abilistic models briefly summarized here (see [8] for full details).
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8-mic. array Activeness values (x1,t · · ·xS,t) Activeness values {xs,t} Final decisions {ĉs,t} (0 or 1).

on a table for one time frame t for all time frames (Eq. 1) A red circle is a false alarm.

Fig. 2. Sector-based detection (20-degree sectors): multichannel waveforms (a) are transformed into “activeness” values (b,c), as in [6, 7],

which are thresholded to obtain the final decision (d). A false alarm happens when ground-truth cs,t = 0 and final decision ĉs,t = 1.

2. THE TASK: DETECTION WITH MICROPHONE ARRAY

A microphone array (Fig. 2a) can be used to detect jointly where

and when a given person is speaking, as already reported in meet-

ing rooms [6] and cars [7], and briefly summarized here. It can de-

tect multiple people talking concurrently, as often happens in spon-

taneous multi-party speech [9], as in meetings.

Both space and time are discretized, respectively into volumes

of spaces (e.g. 20-degree radial sectors around the array, Fig. 2b),

and short time-frames (20 to 30 ms). For each time-frame, a discrete

frequency-domain analysis called “SAM-SPARSE-MEAN” [7] esti-

mates the “activeness” of a sector as the bandwidth occupied by the

acoustic sources in that sector. Since speech is a wideband signal,

the larger “activeness” is, the more likely there is at least one ac-

tive source in the corresponding sector. A time-frame t of samples

from multiple microphones (Fig. 2a) is transformed into a vector

(x1,t · · ·xS,t) of activeness values (Fig. 2b) as follows [6, 7]:

• Process each FFT frequency bin separately.

• Average the delay-sum power [10] within a sector of space.

• Sparsity assumption: for each frequency bin, only one active sec-

tor, the one with maximum delay-sum power.

• Activeness xs,t of a given sector s = number of frequency bins

where sector s is dominant, at time t (1 ≤ s ≤ S and 1 ≤ t ≤ T ).

Repeating this process over time yields a spatio-temporal pattern

of “activeness” (Fig. 2c). The set of all values xs,t is written:

{xs,t}
def
= { xs,t | 1 ≤ s ≤ S, 1 ≤ t ≤ T } (1)

Detection task: One final binary decision ĉs,t = 0 or 1 is

taken for each activeness value xs,t by comparing it to a thresh-

old δx (Figs. 2c,d). Errors are made such as False Alarms (circled

in Fig. 2d). Performance metrics such as FAR [2] are derived by

comparing all final decisions {ĉs,t} with a ground truth {cs,t}:

FAR
def
=

Number of false alarms

Number of silent samples
(2)

=
card { (s, t) | cs,t = 0 and ĉs,t = 1 }

card { (s, t) | cs,t = 0 }
(3)

where card {·} is the cardinal of a set. The purpose here is to se-

lect δx so that the actual FAR(δx) = FART (e.g. 0.5%). The main

focus is not to improve the ROC curve, but rather be able to select a

user-specified working point on the ROC curve (Fig. 1). For various

conditions (noisy/clean, different people, etc.), the ROC curve may

change. Thus, adaptive approaches are desirable, where for various

conditions different threshold values δx are selected, ensuring that

FAR(δx, condition) = FART.

Data: Five real 16kHz audio sequences were taken from a

meeting room audio-visual corpus available online [11], recorded

with a horizontal circular 8-mic array (10 cm radius) set on a

table (Fig. 2a). Complete data and description can be found at:

ht tp: / /glat . info/ma/05-ICASSP  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Seq. #1 to #3 were recorded with either 2 or 3 simultaneously

active loudspeakers, at various locations. Seq. #4 has a single

human speaker at various locations. Seq. #5 has multiple concurrent

human speakers. Total duration exceeds 1 hour. Activeness values

{xs,t} are extracted as explained above. Time frames are 32 ms

long, half-overlapping (one frame every 16 ms).

3. THRESHOLD SELECTION WITH TRAINING DATA

A classical approach is to use “training” data where the ground-truth

{cs,t} is known, and select a threshold δx such that FAR(δx) =
FART. The threshold δx is then kept fixed and applied to any unseen

“test” data. For “training” we used the first 3 minutes of Seq. #1, for

“test” the remaining part of Seq. #1, and Seqs. #2 to #5.

The training/testing process was repeated for various target val-

ues FART. In Fig. 4, FAR curves compare target FART and ob-

tained FAR. The FAR curve is close to ideal (Y = X) on loud-

speaker data, but quite far from ideal on human data. Both can be

explained by the big difference between the “human” condition (real

speech from humans) and the “loudspeaker” condition used during

training (synthetic speech from loudspeakers). The threshold δx se-

lected on the training condition does not generalize to the test con-

dition. The next section addresses this issue without training data.

4. THRESHOLD SELECTION WITHOUT TRAINING DATA

This section proposes unsupervised approaches, where training data

is not used. A probabilistic model is fitted on unseen test data using

the EM algorithm [4]. The threshold value δx is derived from the

model, such that an estimate FAR(δx) is equal to FART. Exper-

iments show that the corresponding working point is closer to the

target (Fig. 1), than with the “training” approach. Full details on

model-based approaches are available in [8].

4.1. Unsupervised fit of a probabilistic model on test data

For a given recording, the data set {xs,t} is collected into 1 dimen-

sion, irrespective of sector in space s or time frame t (gray histogram

in Fig. 3a). As shown in [8], it can be fitted with a sensible proba-

bilistic model with 2 components f0 (“inactivity”) and f1 (“activ-

ity”). Each component is assumed to follow a Rice distribution [12],

which describes the probability density of the envelope of the sum

of a sinusoidal wave and a zero mean narrow-band Gaussian noise.

No manual tuning is needed and the EM cost is very small [8],

similarly to [13]. The three curves in Fig. 3a show an example of fit.



activeness

all
inactivity
activity
data

activeness

all
inactivity
activity
FAR1

δ x 

(a) (b)

2-mixture model fitted model-only estimation of FAR
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Fig. 3. Unsupervised fit of a 2-mixture model M =
{w0, w1, f0, f1}. The histogram in (a) is a 1-dimensional view of

all data {xs,t}, irrespective of sector in space s or time t. w0 and w1

are the priors of inactivity and activity, respectively.

4.2. “model only” threshold selection

Once the model is fitted on the test data, the threshold value δx can be

used using the model M alone (Fig. 3b), such that FAR1(M, δx) =
FART, where:

FAR1(M, δx)
def
=

Z +∞

δx

f0(x)dx (4)

Since a model is always a simplification of reality, in some cases

it may not fit well the data, and the FAR1 estimate will be very

different from the actual FAR. The selected threshold δx would then

lead to a FAR performance very different from the desired FART.

4.3. “model+data” threshold selection

We propose to correct a possible bad fit of the model by using the test

data itself. Consider the definition of FAR in Eq. 3. Numerator and

denominator can be approximated with their respective conditional

expectations, using posterior probabilities.

Approximation of the numerator: For a given sample xs,t, it

can be shown [8] that the probability of having a false alarm is:

p ( cs,t = 0, ĉs,t = 1 | xs,t, M, δx ) = p
(0)
s,t · 1xs,t>δx (5)

where 1proposition is the indicator function: 1proposition = 1 if

proposition is true, 0 otherwise, and p
(0)
s,t is the posterior proba-

bility of inactivity, for sample xs,t, as derived from Bayes rule:

p
(0)
s,t = w0f0(xs,t) / [w0f0(xs,t) + w1f1(xs,t)]. From Eq. 5, the

expected number of false alarms is:
X

s,t

p ( cs,t = 0, ĉs,t = 1 | xs,t, M, δx ) =
X

s,t

xs,t>δx

p
(0)
s,t (6)

Approximation of the denominator: the expected number of

silent samples (i.e. xs,t such that cs,t = 0) is
P

s,t
p
(0)
s,t .

Approximation of FAR:

FAR2(M, {xs,t}, δx)
def
=

X

s,t

xs,t>δx

p
(0)
s,t /

X

s,t

p
(0)
s,t (7)

Implementation: Determining δx can be done in an efficient

manner, by first ordering samples {xs,t} by decreasing value, irre-

spective of s or t, and second computing cumulative sums of poste-

riors p
(0)
s,t . The computational cost can be drastically decreased [8]

by reducing the data to a fixed, small number of samples (e.g. 100).

4.4. Experiments

Fig. 4 shows the resulting FAR curves. Tab. 2 shows The Root Mean

Square (RMS) of (FAR/FART − 1) for a practical range of small

FART values (up to 5%). This RMS metric was chosen in order to

normalize results that have very different orders of magnitude (from

0.1% to 5%). Ideally the RMS value is equal to zero.

Compared to the “training” result, both model-based approaches

yield a degradation on loudspeaker data and an improvement on

human data. This can be explained by the absence of condition-

specific tuning in the model-based approaches, in contrary to “train-

ing”. Note that the “model+data” approach systematically improves

over the “model only” approach.

Overall, there is a major improvement over the “training” ap-

proach in terms of robustness across conditions, especially visible in

Fig. 4, Seq. #4. This is a positive result since the model-based ap-

proaches have the exact same ROC curve as the “training” approach.

The next section shows that the “model+data” approach can be ap-

plied to more complex models, thus bringing further improvement.

loudspeakers humans

Seq. #1 #2 #3 #4 #5

training 0.109 0.142 0.154 1.898 3.929

model only 0.576 1.022 0.977 1.780 3.119

model+data 0.217 0.494 0.443 1.121 2.344

model+data (N-D) 0.117 0.078 0.121 0.452 1.846

Table 2. RMS statistic over the interval FART = [0.1%, 5%]. This

is the RMS of (FAR/FART − 1): the lower, the better. The best

result for each recording is indicated in boldface.

5. APPLICATION TO MULTIDIMENSIONAL MODELS

All previous approaches (training and model-based) were in

1-dimensional space: each detection decision ĉs,t was taken based

on one sample xs,t only. However, the “model+data” approach (Sec-

tion 4.3) can be applied to more complex multidimensional models.

Prior knowledge that for a given time frame t, all activeness values

sum to a constant
`
P

s
xs,t = constant

´

leads to joint modelling of

all sectors (x1,t · · ·xS,t), as described in details in [8].

Thresholding posteriors: The “model+data” approach pre-

sented in Section 4.3, is modified by replacing the threshold on the

1-dimensional “activeness” feature xs,t ≷ δx with a threshold on the

posterior probability of activity:

p ( cs,t = 1 | {x1,t . . . xS,t}, M ) ≷ δp (8)

Similar to Section 4.3, the threshold on posteri-

ors δp can be determined on the test data itself such that

FAR2(M, {xs,t}, δp) = FART.

With a model in multidimensional space, the goal is to capture

relations between several data samples (x1,t · · ·xs,t · · · xS,t). Thus,

it is hoped that the model will fit the data better, which in turn will

yield an estimate FAR2 closer to the actual FAR.

Experiments: Fig. 4 and Tab. 2 show the results (“N-D”). In

all recordings, for larger values FART > 5%, the results are simi-

lar to those of the 1-dimensional “model+data” approach. For lower

values FART < 5%, in all recordings a systematic improvement is

seen over the 1-dimensional “model+data” approach. On Seq. #1,

results are similar to those of the best one: “training”, which itself

was tuned on part of Seq. #1. On all other recordings the multidi-

mensional approach yields the best results of all approaches.

Overall, this result is quite interesting given that no training data

is used. Note that the multidimensional approach also improves the

ROC curve, as reported in [8].
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All the approaches presented here can also be applied to the

FRR metric. Results [8] confirm the superiority of model-based ap-

proaches over the “training” approach (Fig. 5).
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Fig. 5. Seq. #1 results with FRR metric (whole [0%, 100%] range).

Note that “training” was tuned on Seq. #1.

6. CONCLUSION

The purpose of this paper was to achieve detection so that a user-

specified working point is reached, in terms of FAR. It was shown

that using training data leads to the generalization issue: the detec-

tion threshold selected on training conditions may not be adequate

on different test conditions. An alternative is not to use any train-

ing data, through unsupervised fit of a model on test data. How-

ever, the question is then: how to select the detection threshold in

an adequate manner? An unsupervised model-based approach was

proposed, that is robust across conditions and permits to predict the

FAR as accurately or better than the “training” approach, on the mi-

crophone array task considered here. The main contribution of the

paper is a method to compensate for the possible mismatch between

an unsupervised model and the test data, by estimating conditional

expectations over the test data itself. In particular, it allows use of

complex multidimensional models in a straightforward manner. The

proposed approach is generic, thus it could be applied to other tasks

than microphone array sector-based detection. It can also be applied

to other metrics such as FRR, for example to detect end-points prior

to automatic speech recognition.
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